2025届湖北省天门、仙桃、潜江三市高二上数学期末学业质量监测试题含解析_第1页
2025届湖北省天门、仙桃、潜江三市高二上数学期末学业质量监测试题含解析_第2页
2025届湖北省天门、仙桃、潜江三市高二上数学期末学业质量监测试题含解析_第3页
2025届湖北省天门、仙桃、潜江三市高二上数学期末学业质量监测试题含解析_第4页
2025届湖北省天门、仙桃、潜江三市高二上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省天门、仙桃、潜江三市高二上数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线l:与椭圆C:相切于点P,椭圆C的焦点为,,由光学性质知直线,与l的夹角相等,则的角平分线所在的直线的方程为()A. B.C. D.2.已知双曲线的一个焦点到它的一条渐近线的距离为,则()A.5 B.25C. D.3.双曲线的光学性质为:如图①,从双曲线右焦点发出的光线经双曲线镜面反射,反射光线的反向延长线经过左焦点.我国首先研制成功的“双曲线新闻灯”,就是利用了双曲线的这个光学性质.某“双曲线新闻灯”的轴截面是双曲线的一部分,如图②,其方程为,为其左、右焦点,若从右焦点发出的光线经双曲线上的点和点反射后,满足,,则该双曲线的离心率为()A. B.C. D.4.记为等差数列的前n项和,有下列四个等式,甲:;乙:;丙:;丁:.如果只有一个等式不成立,则该等式为()A.甲 B.乙C.丙 D.丁5.(5分)已知集合A={x|−2<x<4},集合B={x|(x−6)(x+1)<0},则A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|−2<x<−1} D.{x|−1<x<4}6.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,n的最大值是()A.8 B.9C.10 D.117.若直线与圆:相切,则()A.-2 B.-2或6C.2 D.-6或28.直线在轴上的截距为()A.3 B.C. D.9.抛物线的焦点坐标为A. B.C. D.10.已知为圆:上任意一点,则的最小值为()A. B.C. D.11.已知等差数列的前项和为,,公差,.若取得最大值,则的值为()A.6或7 B.7或8C.8或9 D.9或1012.若函数在定义域上单调递增,则实数的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校学生在研究折纸实验中发现,当对折后纸张达到一定的厚度时,便不能继续对折了.在理想情况下,对折次数与纸的长边和厚度有关系:.现有一张长边为30cm,厚度为0.05cm的矩形纸,根据以上信息,当对折完4次时,的最小值为________;该矩形纸最多能对折________次.(参考数值:,)14.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.15.若椭圆的焦点在轴上,且长轴长是短轴长的2倍,则______.16.与直线和直线的距离相等的直线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)若,当时,恒成立,求实数的取值范围.18.(12分)已知双曲线的左,右焦点为,离心率为.(1)求双曲线C的渐近线方程;(2)过作斜率为k的直线l分别交双曲线的两条渐近线于A,B两点,若,求k的值.19.(12分)设数列的前项和为,,且,,(1)若(i)求;(ii)求证数列成等差数列(2)若数列为递增数列,且,试求满足条件的所有正整数的值20.(12分)已知命题p:集合为空集,命题q:不等式恒成立(1)若p为真命题,求实数a的取值范围;(2)若为真命题,为假命题,求实数a的取值范围21.(12分)2020年10月,中共中央办公厅、国务院办公厅印发了《关于全面加强和改进新时代学校体育工作的意见》,某地积极开展中小学健康促进行动,发挥以体育智、以体育心功能,决定在2021年体育中考中再增加一定的分数,规定:考生须参加立定跳远、掷实心球、一分钟跳绳三项测试,其中一分钟跳绳满分20分,某校为掌握九年级学生一分钟跳绳情况,随机抽取了100名学生测试,其一分一分钟跳绳个数成绩(分)1617181920频率(1)若每分钟跳绳成绩不足18分,则认为该学生跳绳成绩不及格,求在进行测试的100名学生中跳绳成绩不及格的人数为多少?(2)该学校决定由这次跳绳测试一分钟跳绳个数在205以上(包括205)的学生组成“小小教练员"团队,小明和小华是该团队的成员,现学校要从该团队中选派2名同学参加某跳绳比赛,求小明和小华至少有一人被选派的概率22.(10分)为让“双减”工作落实到位,某中学积极响应上级号召,全面推进中小学生课后延时服务,推行课后服务“”模式,开展了内容丰富、形式多样、有利于学生身心成长的活动.该中学初一共有700名学生其中男生400名、女生300名.为让课后服务更受欢迎,该校准备推行体育类与艺术类两大类活动于2021年9月在初一学生中进行了问卷调查.(1)调查结果显示:有的男学生和的女学生愿意参加体育类活动,其他男学生与女学生都不愿意参加体育类活动,请完成下边列联表.并判断是否有的把握认为愿意参加体育类活动与学生的性别相关?愿意参加体育活动情况性别愿意参加体育类活动不愿意参加体育类活动合计男学生女学生合计(2)在开展了两个月活动课后,为了了解学生的活动课情况,在初一年级学生中按男女比例分层抽取7名学生调查情况,并从这7名学生中随机选择3名学生进行展示,用X表示选出进行展示的3名学生中女学生的人数,求随机变量X的分布列和数学期望.0.1000.0500.0250.0102.7063.8415.0246.635参考公式:,其中.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先求得点坐标,然后求得的角平分线所在的直线的方程.【详解】,直线的斜率为,由于直线,与l的夹角相等,则的角平分线所在的直线的斜率为,所以所求直线方程为.故选:A2、B【解析】由渐近线方程得到,焦点坐标为,渐近线方程为:,利用点到直线距离公式即得解【详解】由题意,双曲线故焦点坐标为,渐近线方程为:焦点到它的一条渐近线的距离为:解得:故选:B3、C【解析】连接,已知条件为,,设,由双曲线定义表示出,用已知正切值求出,再由双曲线定义得,这样可由勾股定理求出(用表示),然后在中,应用勾股定理得出的关系,求得离心率【详解】易知共线,共线,如图,设,,则,由得,,又,所以,,所以,所以,由得,因为,故解得,则,在中,,即,所以故选:C4、D【解析】分别假设甲、乙、丙、丁不成立,验证得到答案【详解】设数列的公差为,若甲不成立,则,由①,③可得,此时与②矛盾;A错,若乙不成立,则,由①,③可得,此时;与②矛盾;B错,若丙不成立,则,由①,③可得,此时;与②矛盾;C错,若丁不成立,则,由①,③可得,此时;,D对,故选:D.5、D【解析】由(x−6)(x+1)<0,得−1<x<6,从而有B={x|−1<x<6},所以A∩B={x|−1<x<4},故选D6、B【解析】先求出数列和的通项公式,然后利用分组求和求出,再对进行赋值即可求解.【详解】解:因为数列是以1为首项,2为公差的等差数列所以因为是以1为首项,2为公比的等比数列所以由得:当时,即当时,当时,所以n的最大值是.故选:B.【点睛】关键点睛:本题的关键是利用分组求和求出,再通过赋值法即可求出使不等式成立的的最大值.7、B【解析】利用圆心到直线距离等于半径得到方程,解出的值.【详解】圆心为,半径为,由题意得:,解得:或6.故选:B8、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为3.故选:A9、D【解析】抛物线的标准方程为,从而可得其焦点坐标【详解】抛物线的标准方程为,故其焦点坐标为,故选D.【点睛】本题考查抛物线的性质,属基础题10、C【解析】设,则的几何意义为圆上的点和定点连线的斜率,利用直线和圆相切,即可求出的最小值;【详解】圆,它圆心是,半径为1,设,则,即,当直线和圆相切时,有,可得,,的最小值为:,故选:11、B【解析】根据题意可知等差数列是,单调递减数列,其中,由此可知,据此即可求出结果.【详解】在等差数列中,所以,所以,即,又等差数列中,公差,所以等差数列是单调递减数列,所以,所以等差数列的前项和为取得最大值,则的值为7或8.故选:B.12、D【解析】函数在定义域上单调递增等价于在上恒成立,即在上恒成立,然后易得,最后求出范围即可.【详解】函数的定义域为,,在定义域上单调递增等价于在上恒成立,即在上恒成立,即在上恒成立,分离参数得,所以,即.【点睛】方法点睛:已知函数的单调性求参数的取值范围的通解:若在区间上单调递增,则在区间上恒成立;若在区间上单调递减,则在区间上恒成立;然后再利用分离参数求得参数的取值范围即可.二、填空题:本题共4小题,每小题5分,共20分。13、①.64②.6【解析】利用即可求解,利用和换底公式进行求解.【详解】令,则,则,即,即当对折完4次时,最小值为;由题意,得,,则,所以该矩形纸最多能对折6次.故答案为:64,6.14、2【解析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.15、4【解析】根据椭圆焦点在轴上方程的特征进行求解即可.【详解】因为椭圆的焦点在轴上,所以有,因为长轴长是短轴长的2倍,所以有,故答案为:416、【解析】设直线方程为,根据两平行直线之间距离公式即可求解.【详解】设该直线为:,则由两平行直线之间距离公式得:,故该直线为:;故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2).【解析】(1)求得,分、两种情况讨论,分析导数的符号变化,由此可得出函数的单调递增区间和递减区间;(2)利用参变量分离法可得出对任意的恒成立,构造函数,其中,利用导数求出函数在上的最小值,由此可求得实数的取值范围.【小问1详解】解:函数的定义域为,.因为,由,可得.①当时,由可得,由可得.此时,函数的单调递减区间为,单调递增区间为;②当时,由可得,由可得,此时,函数的单调递增区间为,单调递减区间为.综上所述,当时,函数的单调递减区间为,单调递增区间为;当时,函数单调递减区间为,单调递增区间为【小问2详解】解:当且时,由,可得,令,其中,.当时,,此时函数单调递减,当时,,此时函数单调递增,则,.18、(1)(2)【解析】(1)由离心率可得双曲线的渐近线方程;(2)设,则的中点为,由,可得,然后的方程与双曲线的渐近线方程联立,利用韦达定理可得答案.【小问1详解】设,则,又,所以,得,所以双曲线的渐近线方程为.【小问2详解】由已知直线的倾斜角不是直角,,设,则的中点为,,由,可知,所以,即,因为的方程为,双曲线的渐近线方程可写为,由消去y,得,所以,,所以,因为,所以,即.19、(1);详见解析;(2)5.【解析】(1)由题可得,由条件可依次求各项,即得;猜想,用数学归纳法证明即得;(2)设,由题可得,进而可得,结合条件即求.【小问1详解】(i)∵,且,,,∴,,,∴,,,又,,,∴,∴,解得,,解得,,解得,,解得,∴;(ii)由,,,,猜想数列是首项,公差为的等差数列,,用数学归纳法证明:当时,,成立;假设时,等式成立,即,则时,,∴,∴当时,等式也成立,∴,∴数列是首项,公差为的等差数列.【小问2详解】设,由,,即,∴,又,,,∴,,,,,,∴,,,∴,又数列为递增数列,∴,解得,由,∴,解得.【点睛】关键点点睛:第一问的关键是由条件猜想,然后数学归纳法证明,第二问求出,,即得.20、(1)(2)【解析】(1)根据判别式小于0可得;(2)根据复合命题的真假可知,p和q有且只有一个真命题,然后根据相应范围通过集合运算可得.【小问1详解】因为集合为空集,所以无实数根,即,解得,所以p为真命题时,实数a取值范围为.【小问2详解】由解得:,即命题q为真时,实数a的取值范围为,易知p为假时,a的取值范围为,q为假时,a的取值范围为.因为为真命题,为假命题,则p和q有且只有一个真命题,当p为假q为真时,实数a的取值范围为;当p为真q为假时,实数a的取值范围为.综上,实数a的取值范围为21、(1)14人;(2).【解析】(1)根据频率直方表区间成绩及其对应的频率,即可求每分钟跳绳成绩不足18分的人数.(2)由表格数据求出一分钟跳绳个数在205以上(包括205)的学生共6人,列举出六人中选两人参加比赛的所有情况、小明和小华至少有一个被选派的情况,由古典概型的概率求法即可得小明和小华至少有一人被选派的概率.【详解】(1)由表可知,每分钟跳绳成绩不足18分,即为成绩是16分或17分,在进行测试的100名学生中跳绳成绩不及格人数为:人)(2)一分钟跳绳个数在205以上(包括205)的学生频率为,其人数为:(人),记小明为,小华为,其余四人为,则在这六人中选两人参加比赛的所有情况为:,共15种,其中小明和小华至少有一个被选派的情况有:,共9种,小明和小华至少有一人被选派的概率为:.22、(1)详见解析;(2)详见解析.【解析】(1)根据初一男生数和女生数,结合有的男学生和的女学生,愿意参加体育类活动求解;计算的值,再与临界值表对照下结论;(2)根据这7名学生中男生有4名,女生有3名,随机选择3名由抽到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论