2025届湖北省襄阳市等九地市高二数学第一学期期末调研试题含解析_第1页
2025届湖北省襄阳市等九地市高二数学第一学期期末调研试题含解析_第2页
2025届湖北省襄阳市等九地市高二数学第一学期期末调研试题含解析_第3页
2025届湖北省襄阳市等九地市高二数学第一学期期末调研试题含解析_第4页
2025届湖北省襄阳市等九地市高二数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省襄阳市等九地市高二数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.2.过点A(3,3)且垂直于直线的直线方程为A. B.C. D.3.已知实数,满足约束条件则的最大值为()A.10 B.8C.4 D.204.有6本不同的书,按下列方式进行分配,其中分配种数正确的是()A.分给甲、乙、丙三人,每人各2本,有15种分法;B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;5.正方体的棱长为2,E,F,G分别为,AB,的中点,则直线ED与FG所成角的余弦值为()A. B.C. D.6.若函数有两个不同的极值点,则实数的取值范围是()A. B.C. D.7.已知为偶函数,且当时,,其中为的导数,则不等式的解集为()A. B.C. D.8.从1,2,3,4,5中随机抽取三个数,则这三个数能成为一个三角形三边长的概率为()A. B.C. D.9.已知数据的平均数是,方差是4,则数据的方差是()A.3.4 B.3.6C.3.8 D.410.已知函数,,当时,不等式恒成立,则实数的取值范围为()A. B.C. D.11.下列说法中正确的是()A.棱柱的侧面可以是三角形B.棱台的所有侧棱延长后交于一点C.所有几何体的表面都能展开成平面图形D.正棱锥的各条棱长都相等12.已知双曲线渐近线方程为,则该双曲线的离心率等于()A. B.C.2 D.4二、填空题:本题共4小题,每小题5分,共20分。13.二项式的展开式中,项的系数为__________.14.已知某次数学期末试卷中有8道4选1的单选题15.若圆锥的轴截面是顶角为的等腰三角形,且圆锥的侧面积为,则该圆锥的体积为______.16.函数的导函数___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求下列不等式的解集:(1);(2)18.(12分)某企业2021年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到.每年年底扣除下一年的消费基金1.5千万元后,剩余资金投入再生产.设从2021年的年底起,每年年底企业扣除消费基金后的剩余资金依次为,,,…(1)写出,,,并证明数列是等比数列;(2)至少到哪一年的年底,企业的剩余资金会超过21千万元?(lg19.(12分)如图,在三棱柱中,,D为BC的中点,平面平面ABC(1)证明:;(2)已知四边形是边长为2的菱形,且,问在线段上是否存在点E,使得平面EAD与平面EAC的夹角的余弦值为,若存在,求出CE的长度,若不存在,请说明理由20.(12分)红铃虫是棉花的主要害虫之一,也侵害木棉、锦葵等植物.为了防治虫害,从根源上抑制害虫数量.现研究红铃虫的产卵数和温度的关系,收集到7组温度和产卵数的观测数据于表Ⅰ中.根据绘制的散点图决定从回归模型①与回归模型②中选择一个来进行拟合表Ⅰ温度x/℃20222527293135产卵数y/个711212465114325(1)请借助表Ⅱ中的数据,求出回归模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)类似的,可以得到回归模型②的方程为,试求两种模型下温度为时的残差;(3)若求得回归模型①的相关指数,回归模型②的相关指数,请结合(2)说明哪个模型的拟合效果更好参考数据:.附:回归方程中,相关指数.21.(12分)已知:方程表示焦点在轴上的椭圆,:方程表示焦点在轴上的双曲线,其中.(1)若“”为真命题,求的取值范围:(2)若“”为假命题,“”为真命题,求的取值范围.22.(10分)如图,已知菱形ABCD的边长为3,对角线,将△沿着对角线BD翻折至△的位置,使得,在平面ABCD上方存在一点M,且平面ABCD,(1)求证:平面平面ABD;(2)求点M到平面ABE的距离;(3)求二面角的正弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】点在平面内的射影是坐标不变,坐标为0的点.【详解】点在坐标平面内的射影为,故点M的坐标是故选:C2、D【解析】过点A(3,3)且垂直于直线的直线斜率为,代入过的点得到.故答案为D.3、A【解析】根据约束条件作出可行域,再将目标函数表示的一簇直线画出向可行域平移即可求解.【详解】作出可行域,如图所示转化为,令则,作出直线并平移使它经过可行域点,经过时,,解得,所以此时取得最大值,即有最大值,即故选:A.4、D【解析】根据题意,分别按照选项说法列式计算验证即可做出判断.【详解】选项A,6本不同的书分给甲、乙、丙三人,每人各2本,有种分配方法,故该选项错误;选项B,6本不同的书分给甲、乙、丙三人,一人4本,另两人各1本,先将6本书分成4-1-1的3组,再将三组分给甲乙丙三人,有种分配方法,故该选项错误;选项C,6本不同的书分给甲乙每人各2本,有种方法,其余分给丙丁每人各1本,有种方法,所以不同的分配方法有种,故该选项错误;选项D,先将6本书分为2-2-1-14组,再将4组分给甲乙丙丁4人,有种方法,故该选项正确.故选:D.5、B【解析】建立空间直角坐标系,利用空间向量坐标运算即可求解.【详解】如图所示建立适当空间直角坐标系,故选:B6、D【解析】计算,然后等价于在(0,+∞)由2个不同的实数根,然后计算即可.【详解】的定义域是(0,+∞),,若函数有两个不同的极值点,则在(0,+∞)由2个不同的实数根,故,解得:,故选:D.【点睛】本题考查根据函数极值点个数求参,考查计算能力以及思维转变能力,属基础题.7、A【解析】根据已知不等式和要求解的不等式特征,构造函数,将问题转化为解不等式.通过已知条件研究g(x)的奇偶性和单调性即可解该不等式.【详解】令,则根据题意可知,,∴g(x)是奇函数,∵,∴当时,,单调递减,∵g(x)是奇函数,g(0)=0,∴g(x)在R上单调递减,由不等式得,.故选:A.8、C【解析】列举出所有情况,然后根据两边之和大于第三边数出能构成三角形的情况,进而得到答案.【详解】5个数取3个数的所有情况如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10种情况,而能构成三角形的情况有{2,3,4;2,4,5;3,4,5}共3种情况,故所求概率.故选:C.9、B【解析】利用方差的定义即可解得.【详解】由方差的定义,,则,所以数据的方差为:.故选:B10、C【解析】由题意得出,构造函数,可知函数在区间上单调递增,可得出对任意的恒成立,利用参变量分离法可得出,利用导数求得函数在区间上的最大值,由此可求得实数的取值范围.【详解】函数的定义域为,当时,恒成立,即,构造函数,则,所以,函数在区间上为增函数,则对任意的恒成立,,令,其中,则.,所以函数在上单调递减;又,所以.因此,实数的取值范围是.故选:C.11、B【解析】根据棱柱、棱台、球、正棱锥结构特征依次判断选项即可.【详解】棱柱的侧面都是平行四边形,A不正确;棱台是由对应的棱锥截得的,B正确;不是所有几何体的表面都能展开成平面图形,例如球不能展开成平面图形,C不正确;正棱锥的各条棱长并不是都相等,应该为正棱锥的侧棱长都相等,所以D不正确.故选:B.12、A【解析】由双曲线的渐近线方程,可得,再由的关系和离心率公式,计算即可得到所求值【详解】解:双曲线的渐近线方程为,由题意可得即,可得由可得,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、80【解析】利用二项式的通项公式进行求解即可.【详解】二项式的通项公式为:,令,所以项的系数为,故答案为:8014、##0.84375【解析】合理设出事件,利用全概率公式进行求解.【详解】设小王从这8题中任选1题,且作对为事件A,选到能完整做对的5道题为事件B,选到有思路的两道题为事件C,选到完全没有思路为事件D,则,,,由全概率公式可得:PA=PB故答案为:15、【解析】设圆锥的高为,可得出圆锥的母线长为,以及圆锥的底面半径为,利用圆锥的侧面积公式求出的值,再利用锥体的体积公式可求得结果.【详解】设圆锥的高为,由于圆锥的轴截面是顶角为的等腰三角形,则轴截面三角形的底角为,故该圆锥的母线长为,底面半径为,圆锥的侧面积为,可得,因此,该圆锥的体积为.故答案为:.16、【解析】利用导函数的乘法公式和复合函数求导法则进行求解【详解】故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用一元二次不等式的解法求解;(2)利用分式不等式的解法求解.【小问1详解】解:因为,所以,解得,所以不等式的解集是;【小问2详解】因为,所以,所以,即,解得,所以不等式的解集是.18、(1),,,证明见解析(2)至少到2026年的年底,企业的剩余资金会超过21千万元【解析】(1)由题意可知,,,,再结合等比数列的性质,即可求解(2)由(1)知,,则,令,再结合对数函数运算,即可求解【小问1详解】依题意知,,,,,所以,又,所以是首项为3,公比为1.5的等比数列.【小问2详解】由(1)知,,所以令,解得,所以,所以至少到2026年的年底,企业的剩余资金会超过21千万元19、(1)证明见解析(2)存在,1【解析】(1)由面面垂直证明线面垂直,进而证明线线垂直;(2)建立空间直角坐标系,利用空间向量进行求解.【小问1详解】∵,且D为BC的中点,∴,因为平面平面ABC,交线为BC,AD⊥BC,AD面ABC,所以AD⊥面,因为面,所以.【小问2详解】假设存在点E,满足题设要求连接,,∵四边形为边长为2的菱形,且,∴为等边三角形,∵D为BC的中点∴,∵平面平面ABC,交线为BC,面,所以面ABC,故以D为原点,DC,DA,分别为x,y,z轴的空间直角坐标系则,,,,设,,设面AED的一个法向量为,则,令,则设面AEC的一个法向量为,则,令,则设平面EAD与平面EAC的夹角为,则解得:,故点E为中点,所以20、(1)(或)(2)模型①:1.54;模型②:65.54(3)模型①【解析】(1)利用两边取自然对数,利用表中的数据即可求解;(2)分别计算模型①、②在时残差;(3)根据相关指数的大小判断摸型①、②的残差平方和,再得出那个模型的拟合效果更好.【小问1详解】由,得,令,得,由表Ⅱ数据可得,,,所以,所以回归方程为(或).【小问2详解】由题意可知,模型①在时残差为,模型②在时残差为.【小问3详解】因为,即模型①的相关指数大于模型②的相关指数,由相关指数公式知,模型①的残差平方和小于模型②的残差平方和,因此模型①得到的数据更接近真实数据,所以模型①的拟合效果更好.21、(1)或(2)【解析】(1)先假设命题为真命题,求出的取值范围,为真命题,取补集即可(2)假设命题为真命题,求出的取值范围,根据题意,则命题假设和命题一真一假,分类讨论求的取值范围【小问1详解】解:若为真命题,则,解得,若“”为真命题,则为假命题,或;【小问2详解】若为真命题,则解得,若“”为假命题,则“”为真命题,则与一真一假,①若真假,则解得,②若真假,则解得,综上所述,,即的取值范围为.22、(1)证明见解析;(2)1;(3).【解析】(1)过E作EO垂直于BD于O,连接AO,由勾股定义易得,由菱形的性质有,再根据线面垂直、面面垂直的判定即可证结论.(2)构建空间直角坐标系,确定相关点的坐标,进而求的坐标及面ABE的法向量,应用空间向量的坐标运算求点面距.(3)由(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论