福州市重点中学2025届高二上数学期末学业水平测试试题含解析_第1页
福州市重点中学2025届高二上数学期末学业水平测试试题含解析_第2页
福州市重点中学2025届高二上数学期末学业水平测试试题含解析_第3页
福州市重点中学2025届高二上数学期末学业水平测试试题含解析_第4页
福州市重点中学2025届高二上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福州市重点中学2025届高二上数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,和直线,若在坐标平面内存在一点P,使,且点P到直线l的距离为2,则点P的坐标为()A.或 B.或C.或 D.或2.已知矩形,,,沿对角线将折起,若二面角的余弦值为,则与之间距离为()A. B.C. D.3.直线在轴上的截距为,在轴上的截距为,则有()A., B.,C., D.,4.已知函数的导数为,且,则()A. B.C.1 D.5.双曲线的离心率是,则双曲线的渐近线方程是()A. B.C. D.6.已知三角形三个顶点为、、,则边上的高所在直线的方程为()A. B.C. D.7.已知圆的方程为,则实数m的取值范围是()A. B.C. D.8.已知曲线,下列命题错误的是()A.若,则是椭圆,其焦点在轴上B.若,则是圆,其半径为C.若,则是双曲线,其渐近线方程为D.若,,为上任意一点,,为曲线的两个焦点,则9.设函数若函数有两个零点,则实数m的取值范围是()A. B.C. D.10.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()A. B.C. D.11.在等差数列中,若,则()A.5 B.6C.7 D.812.已知函数的导函数为,若的图象如图所示,则函数的图象可能是()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的右顶点为,直线与椭圆交于两点,若,则椭圆的离心率为___________.14.已知椭圆的短轴长为2,上顶点为,左顶点为,左、右焦点分别是,,且的面积为,点为椭圆上的任意一点,则的取值范围是______.15.某次实验得到如下7组数据,通过判断知道与具有线性相关性,其线性回归方程为,则______.(参考公式:)12345676.06.26.36.46.46.76.816.不等式的解集是_______________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列和中,,且,.(1)写出,,,,猜想数列和的通项公式并证明;(2)若对于任意都有,求的取值范围.18.(12分)已知函数.若图象上的点处的切线斜率为(1)求a,b的值;(2)的极值19.(12分)函数(1)求在上的单调区间;(2)当时,不等式恒成立,求实数a的取值范围20.(12分)如图,在正四棱柱中,是上的点,满足为等边三角形.(1)求证:平面;(2)求点到平面的距离.21.(12分)已知等差数列前n项和为,,,若对任意的正整数n成立,求实数的取值范围.22.(10分)自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产.某医疗器械厂统计了口罩生产车间每名工人的生产速度,并将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等(1)估计口罩生产车间工人生产速度的中位数(结果写成分数的形式);(2)为了解该车间工人生产速度是否与他们的工作经验有关,现从车间所有工人中随机抽样调查了5名工人的生产速度以及他们的工龄(参加工作的年限),数据如下表:工龄x(单位:年)4681012生产速度y(单位:件/小时)4257626267根据上述数据求每名工人的生产速度y关于他的工龄x的回归方程,并据此估计该车间某位有16年工龄的工人的生产速度附:回归方程中斜率和截距的最小二乘估计公式为:,

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设点的坐标为,根据,点到直线的距离为,联立方程组即可求解.【详解】解:设点的坐标为,线段的中点的坐标为,,∴的垂直平分线方程为,即,∵点在直线上,∴,又点到直线:的距离为,∴,即,联立可得、或、,∴所求点的坐标为或,故选:C2、C【解析】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,分析可知二面角的平面角为,利用余弦定理求出,证明出,再利用勾股定理可求得的长.【详解】过点在平面内作,过点在平面内作,以、为邻边作平行四边形,连接,因为,,,则,因为,由等面积法可得,同理可得,由勾股定理可得,同理可得,,因为四边形为平行四边形,且,故四边形为矩形,所以,,因为,所以,二面角的平面角为,在中,,,由余弦定理可得,,,,则,,因为,平面,平面,则,,由勾股定理可得.故选:C.3、B【解析】将直线方程的一般形式化为截距式,由此可得其在x轴和y轴上的截距.【详解】直线方程化成截距式为,所以,故选:B.4、B【解析】直接求导,令求出,再将带入原函数即可求解.【详解】由得,当时,,解得,所以,.故选:B5、B【解析】利用双曲线的离心率,以及渐近线中,关系,结合找关系即可【详解】解:,又因为在双曲线中,,所以,故,所以双曲线的渐近线方程为,故选:B6、A【解析】求出直线的斜率,可求得边上的高所在直线的斜率,利用点斜式可得出所求直线的方程.【详解】直线的斜率为,故边上的高所在直线的斜率为,因此,边上的高所在直线的方程为.故选:A.7、C【解析】根据可求得结果.【详解】因为表示圆,所以,解得.故选:C【点睛】关键点点睛:掌握方程表示圆的条件是解题关键.8、D【解析】根据椭圆和双曲线的性质以及定义逐一判断即可.【详解】曲线,若,则是椭圆,其焦点在轴上,故A正确;若,则,即是圆,半径为,故B正确;若,则是双曲线,当,则渐近线方程为,当,则渐近线方程为,故C正确;若,,则是双曲线,其焦点在轴上,由双曲线的定义可知,,故D错误;故选:D9、D【解析】有两个零点等价于与的图象有两个交点,利用导数分析函数的单调性与最值,画出函数图象,数形结合可得结果.【详解】解:设,则,所以在上递减,在上递增,,且时,,有两个零点等价于与的图象有两个交点,画出的图象,如下图所示,由图可得,时,与的图象有两个交点,此时,函数有两个零点,实数m的取值范围是,故选:D.【点睛】方法点睛:本题主要考查分段函数的性质、利用导数研究函数的单调性、函数的零点,以及数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质10、C【解析】先研究四个选项中图象的特征,再对照小明上学路上的运动特征,两者对应即可选出正确选项.【详解】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图象一定是下降的,由此排除A;再由小明骑车上学,开始时匀速行驶可得出图象开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图象与x轴平行,由此排除D,之后为了赶时间加快速度行驶,此一段时间段内函数图象下降的比较快,由此可确定C正确,B不正确故选C【点睛】本题考查函数的表示方法,关键是理解坐标系的度量与小明上学的运动特征,属于基础题.11、B【解析】由得出.【详解】由可得,故选:B12、D【解析】根据导函数大于,原函数单调递增;导函数小于,原函数单调递减;即可得出正确答案.【详解】由导函数得图象可得:时,,所以在单调递减,排除选项A、B,当时,先正后负,所以在先增后减,因选项C是先减后增再减,故排除选项C,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出右顶点坐标,然后推出的纵坐标,利用已知条件列出方程,求解椭圆的离心率即可【详解】解:椭圆的右顶点为,直线与椭圆交于,两点,若,可知,不妨设在第一象限,所以的纵坐标为:,可得:,即,可得,,所以故答案为:14、【解析】根据的面积和短轴长得出a,b,c的值,从而得出的范围,得到关于的函数,从而求出答案【详解】由已知得,故,∵的面积为,∴,∴,又,∴,,∴,又,∴,∴.即的取值范围为.故答案为点睛】本题考查了椭圆的简单性质,函数最值的计算,熟练掌握椭圆的基本性质是解题的关键,属于中档题15、9##【解析】求得样本中心点的坐标,代入回归直线,即可求得.详解】根据表格数据可得:故,解得.故答案为:.16、或【解析】将分式不等式,转化为一元二次不等式求解【详解】因为,所以,解得或.故答案为:或【点睛】本题主要考查分式不等式的解法,还考查了运算求解的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,,证明见解析(2)【解析】(1)已知两式相加化简可得是首项为2,公比为2的等比数列,则,两式相减化简可得是首项为2,公差为2的等差数列,则,(2)由题意可得只需要,令,由和解不等式可求出的最小值,从而可求得的取值范围【小问1详解】由已知得,猜想,,由题得,所以易知,即所以是首项为2,公比为2的等比数列,故,由题得,所以,即,所以是首项为2,公差为2的等差数列,所以.【小问2详解】因为任意都有,即,只需要,记,易知,故,当时,,解得或,当时,,解得,因为,所以,所以,所以的取值范围是.18、(1)(2)极大值为,极小值为【解析】(1)求出函数的导函数,再根据图象上的点处的切线斜率为,列出方程组,解之即可得解;(2)求出函数的导函数,根据导函数的符号求得函数的单调区间,再根据极值的定义即可得解.【小问1详解】解:,,;【小问2详解】解:由(1)得,令,得或,,-1(-1,3)3+0-0+的极大值为,极小值为.19、(1)单调递增区间为;单调递减区间为和(2)【解析】(1)求出,然后可得答案;(2)由条件可得,设,则,然后利用导数可得在上单调递增,,然后分、两种情况讨论求解即可.【小问1详解】由题可得令,得;令,得,所以f(x)的单调递增区间为;单调递减区间为和【小问2详解】由,得,即设,则设,则当时,,,所以所以即在上单调递增,则若,则,所以h(x)在上单调递增所以h(x)≥h(0)=0恒成立,符合题意若a>2,则,必存在正实数,满足:当时,,h(x)单调递减,此时h(x)<h(0)=0,不符合题意综上所述,a的取值范围是20、(1)证明见解析;(2).【解析】(1)根据题意证明,,然后根据线面垂直的判定定理证明问题;(2)结合(1),进而利用等体积法求得答案.【小问1详解】由题意,,为等边三角形,,∵平面ABCD,∴,则,即为中点.连接,∵平面,平面,∴,易得,则,又,于是,即,同理,即,又平面.【小问2详解】设M到平面的距离为d,,∴.易得,取BD的中点N,连接,则,所以,,所以,,.即M到平面的距离为1.21、【解析】设等差数列的公差为,根据题意得,解方程得,,进而得,故恒成立,再结合二次函数的性质得当或4时,取得最小值,进而得答案.【详解】解:设等差数列的公差为,由已知,.联立方程组,解得,.所以,,由题意,即.令,其图象为开口向上的抛物线,对称轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论