石家庄第二中学2025届数学高二上期末考试试题含解析_第1页
石家庄第二中学2025届数学高二上期末考试试题含解析_第2页
石家庄第二中学2025届数学高二上期末考试试题含解析_第3页
石家庄第二中学2025届数学高二上期末考试试题含解析_第4页
石家庄第二中学2025届数学高二上期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

石家庄第二中学2025届数学高二上期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是虚数单位,则复数对应的点在平面内位于()A.第一象限 B.第二象限C.第三象限 D.第四象限2.抛物线的准线方程为()A B.C. D.3.圆的圆心到直线的距离为2,则()A. B.C. D.24.过点且与抛物线只有一个公共点的直线有()A.1条 B.2条C.3条 D.0条5.某研究所为了研究近几年中国留学生回国人数的情况,对2014至2018年留学生回国人数进行了统计,数据如下表:年份20142015201620172018年份代码12345留学生回国人数/万36.540.943.348.151.9根据上述统计数据求得留学生回国人数(单位:万)与年份代码满足的线性回归方程为,利用回归方程预测年留学生回国人数为()A.63.14万 B.64.72万C.66.81万 D.66.94万6.曲线在点处的切线过点,则实数()A. B.0C.1 D.27.等比数列的前项和为,前项积为,,当最小时,的值为()A.3 B.4C.5 D.68.将一个表面积为的球用一个正方体盒子装起来,则这个正方体盒子的最小体积为()A. B.C. D.9.积分()A. B.C. D.10.已知圆与圆,则两圆的位置关系是()A.外切 B.内切C.相交 D.相离11.函数在和处的导数的大小关系是()A. B.C. D.不能确定12.已知,,若,则实数的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若关于的不等式恒成立,则实数的取值范围是______.14.曲线在点处的切线方程为__________.15.已知空间向量,则向量在坐标平面上的投影向量是__________16.一条直线过点,且与抛物线交于,两点.若,则弦中点到直线的距离等于__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线l经过两条直线2x﹣y﹣3=0和4x﹣3y﹣5=0交点,且与直线x+y﹣2=0垂直(1)求直线l的方程;(2)若圆C过点(1,0),且圆心在x轴的正半轴上,直线l被该圆所截得的弦长为,求圆C的标准方程18.(12分)已知空间中三点,,,设,(1)求向量与向量的夹角的余弦值;(2)若与互相垂直,求实数的值19.(12分)已知等比数列的前n项和为,,(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个等差数列,记插入的这n个数之和为,求数列的前n项和20.(12分)如图,四棱柱的底面为正方形,平面,,,点在上,且.(1)求证:;(2)求直线与平面所成角的正弦值;(3)求平面与平面夹角的余弦值.21.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的存在,求实数的取值范围;若问题中的不存在,请说明理由设等差数列的前n项和为,数列的前n项和为,___________,,,是否存在实数,对任意都有?22.(10分)设函数,其中,为自然对数的底数.(1)讨论单调性;(2)证明:当时,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】计算出复数即可得出结果.【详解】由于,对应的点的坐标为,在第一象限,故选:A.2、D【解析】根据抛物线方程求出,进而可得焦点坐标以及准线方程.【详解】由可得,所以焦点坐标为,准线方程为:,故选:D.3、B【解析】配方求出圆心坐标,再由点到直线距离公式计算【详解】圆的标准方程是,圆心为,∴,解得故选:B.【点睛】本题考查圆的标准方程,考查点到直线距离公式,属于基础题4、B【解析】过的直线的斜率存在和不存在两种情况分别讨论即可得出答案.【详解】易知过点,且斜率不存在的直线为,满足与抛物线只有一个公共点.当直线的斜率存在时,设直线方程为,与联立得,当时,方程有一个解,即直线与扰物线只有一个公共点.故满足题意的直线有2条.故选:B5、D【解析】先求出样本点的中心,代入线性回归方程即可求出,再将代入线性回归方程即可得到结果【详解】由题意知:,,所以样本点的中心为,所以,解得:,可得线性回归方程为,年对应的年份代码为,令,则,所以预测2022年留学生回国人数为66.94万,故选:D.6、A【解析】由导数的几何意义得切线方程为,进而得.【详解】解:因为,,,所以,切线方程为,因为切线过点,所以,解得故选:A7、B【解析】根据等比数列相关计算得到,,进而求出与,代入后得到,利用指数函数和二次函数单调性得到当时,取得最小值.【详解】显然,由题意得:,,两式相除得:,将代入,解得:,所以,所以,,所以,其中单调递增,所以当时,取得最小值.故选:B8、C【解析】求出球的半径,要使这个正方形盒子的体积最小,则这个正方体正好是该球的外切正方体,所以正方体的棱长等于球的直径,从而可得出答案.【详解】解:设球的半径为,则,得,故该球的半径为11cm,若要使这个正方形盒子的体积最小,则这个正方体正好是该球的外切正方体,所以正方体的棱长等于球的直径,即22cm,所以这个正方体盒子的最小体积为.故选:C.9、B【解析】根据定积分的几何意义求值即可.【详解】由题设,定积分表示圆在x轴的上半部分,所以.故选:B10、A【解析】求得两圆的圆心和半径,再根据圆心距与半径之和半径之差的关系,即可判断位置关系.【详解】对圆,其圆心,半径;对圆,其圆心,半径;又,故两圆外切.故选:A.11、A【解析】求出函数导数即可比较.【详解】,,所以,即.故选:A.12、A【解析】由,得,从而可得答案.【详解】解:因为,所以,即,解得.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设由题可知,当时,可得适合题意,当时,可求函数的最小值即得,当时不合题意,即得.【详解】设,由题可知,∴,当时,,适合题意,所以,当时,令,则,此时时,,单调递减,,,单调递增,∴,又,∴,∴,即,解得,当时,时,,,故的值有正有负,不合题意;综上,实数的取值范围是.故答案为:.【点睛】关键点点睛:本题考查不等式恒成立求参数的取值范围,设由题可知,当时,利用导数可求函数的最小值,结合,可得,进而通过解,即得.14、【解析】先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.【详解】函数的导数为,所以切线的斜率,切点为,则切线方程为故答案为:【点睛】易错点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点,考查学生的运算能力,属于基础题.15、【解析】根据投影向量的知识求得正确答案.【详解】空间向量在坐标平面上的投影向量是.故答案为:16、【解析】求出弦的中点到抛物线准线的距离,进一步得到弦的中点到直线的距离【详解】解:如图,抛物线的焦点为,,弦的中点到准线的距离为,则弦的中点到直线的距离等于故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先求得直线和直线的交点坐标,再用点斜式求得直线的方程.(2)设圆的标准方程为,根据已知条件列方程组,求得,由此求得圆的标准方程.【小问1详解】.直线的斜率为,所以直线的斜率为,所以直线的方程为.【小问2详解】设圆的标准方程为,则,所以圆的标准方程为.18、(1);(2)或.【解析】(1)坐标表示出、,利用向量夹角的坐标表示求夹角余弦值;(2)坐标表示出k+、k-2,利用向量垂直的坐标表示列方程求的值.【详解】由题设,=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夹角余弦值为.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),则(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.19、(1);(2)【解析】(1)设等比数列公比为q,利用与关系可求q,在中令n=1可求;(2)根据等差数列前n项和公式可求,分析{}的通项公式,利用错位相减法求其前n项和.【小问1详解】设等比数列的公比为q,由己知,可得,两式相减可得,即,整理得,可知,已知,令,得,即,解得,故等比数列的通项公式为;【小问2详解】由题意知在与之间插入n个数,这个数组成以为首项的等差数列,∴,设{}前n项和为,①①×3:②①-②:20、(1)证明见解析(2)(3)【解析】(1)以为原点,所在的直线为轴的正方向建立空间直角坐标系,求出平面的一个法向量可得,即平面,再由线面垂直的性质可得答案;(2)设直线与平面所成角的为,可得答案;(3)由二面角的向量求法可得答案.【小问1详解】以为原点,所在的直线为轴的正方向建立空间直角坐标系,则,,,,,所以,,,设平面的一个法向量为,所以,即,令,则,所以,所以,所以平面,平面,所以.【小问2详解】,所以,由(1)平面的一个法向量为,设直线与平面所成角的为,所以直线与平面所成角的正弦值.【小问3详解】由已知为平面的一个法向量,且,由(1)平面的一个法向量为,所以,由图可得平面与平面夹角的余弦值为.21、答案见解析【解析】由已知条件可得,假设时,取最小值,则,若补充条件是①,则可求得,代入化简可求出的取值范围,从而可求得答案,若补充条件是②,则可得,该数列是递减数列,所以不存在k,使得取最小值,若补充条件是③,则可得,代入化简可求出的取值范围,从而可求得答案,【详解】解:等差数列的公差为d,当时,,得,从而,当时,得,所以数列是首项为,公比为的等比数列,所以,由对任意,都有,当等差数列的前n项和存在最小值时,假设时,取最小值,所以;若补充条件是①,因为,,从而,由得,所以,由等差数列的前n项和存在最小值,则,得,又,所以.所以,故实数的取值范围为若补充条件是②,由,即,又,所以.所以,由于该数列是递减数列,所以不存在k,使得取最小值,故实数不存在以下为严格的证明:由等差数列的前n项和存在最小值,则,得,所以,所以不存在k,使得取最小值,故实数不存在若补充条件是③,由,得,又,所以,所以由等差数列的前n项和存在最小值,则,得,又,所以.所以存在,使得取最小值,所以,故实数的取值范围为22、(1)答案见解析(2)答案见解析【解析】(1)求导数,分和,两种情况讨论,即可求得的单调性;(2)令,利用导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论