2025届高考数学一轮复习第三章三角函数解三角形第八节解三角形的实际应用教师文档教案文北师大版_第1页
2025届高考数学一轮复习第三章三角函数解三角形第八节解三角形的实际应用教师文档教案文北师大版_第2页
2025届高考数学一轮复习第三章三角函数解三角形第八节解三角形的实际应用教师文档教案文北师大版_第3页
2025届高考数学一轮复习第三章三角函数解三角形第八节解三角形的实际应用教师文档教案文北师大版_第4页
2025届高考数学一轮复习第三章三角函数解三角形第八节解三角形的实际应用教师文档教案文北师大版_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE第八节解三角形的实际应用授课提示:对应学生用书第71页[基础梳理]实际问题中的常用术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线所成的角中,目标视线在水平视线上方的叫作仰角,目标视线在水平视线下方的叫作俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的水平夹角叫作方位角.方位角α的范围是0°≤α<360°方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)××度①北偏东m°②南偏西n°坡角坡面与水平面的夹角设坡角为α,坡度为i,则i=eq\f(h,l)=tanα坡度坡面的垂直高度h和水平宽度l的比[四基自测]1.(基础点:求高度)在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,如图所示,则塔高CB为()A.eq\f(400,3)m B.eq\f(400,3)eq\r(3)mC.eq\f(200,3)eq\r(3)m D.eq\f(200,3)m答案:A2.(基础点:方向角)两座灯塔A和B与海岸视察站C的距离相等,灯塔A在视察站北偏东40°,灯塔B在视察站南偏东60°,则灯塔A在灯塔B的北偏西________,西偏北________.答案:10°80°授课提示:对应学生用书第72页考点一测量距离与角度挖掘1测量距离/自主练透[例1](1)(河两岸可视两点)如图,设A,B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是m米,∠BAC=α,∠ACB=β,则A,B两点间的距离为()A.eq\f(msinα,sinβ)米 B.eq\f(msinα,sin(α+β))米C.eq\f(msinβ,sin(α+β))米 D.eq\f(msin(α+β),sinα+sinβ)米[解析]在△ABC中,由正弦定理得eq\f(AC,sinB)=eq\f(AB,sinC),故AB=eq\f(ACsinC,sinB)=eq\f(msinβ,sin(α+β)).[答案]C(2)(河对岸或不行视两点)如图,为了测量河对岸A、B两点之间的距离,视察者找到一个点C,从点C可以视察到点A、B;找到一个点D,从点D可以视察到点A、C;找到一个点E,从点E可以视察到点B、C.并测量得到一些数据:CD=2,CE=2eq\r(3),∠D=45°,∠ACD=105°,∠ACB=48.19°,∠BCE=75°,∠E=60°,则A、B两点之间的距离为________.(其中cos48.19°取近似值eq\f(2,3))[解析]依题意知,在△ACD中,∠A=30°,由正弦定理得AC=eq\f(CDsin45°,sin30°)=2eq\r(2).在△BCE中,∠CBE=45°,由正弦定理得BC=eq\f(CEsin60°,sin45°)=3eq\r(2).连接AB(图略),在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BCcos∠ACB=10,∴AB=eq\r(10).[答案]eq\r(10)[破题技法]测量距离问题的解法选择合适的协助测量点,构造三角形,将实际问题转化为求某个三角形的边长问题,再利用正、余弦定理求解.提示:解三角形时,为避开误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.挖掘2测量角度或航向/互动探究[例2]已知海岛B在海岛A北偏东45°方向上,A,B相距10海里,物体甲从海岛B以2海里/小时的速度沿直线AB向海岛A移动,同时物体乙从海岛A沿着海岛A北偏西15°方向以4海里/小时的速度移动.(1)问经过多长时间,物体甲在物体乙的正东方向;(2)求甲从海岛B到达海岛A的过程中,甲、乙两物体的最短距离.[解析](1)如图,设经过x小时,物体甲在物体乙的正东方向,则甲与A的距离为10-2x,乙与A的距离为4x,AD=eq\f(\r(2),2)(10-2x).∴cos15°=eq\f(\r(2)(5-x),4x)=cos(45°-30°),∴x=eq\f(5,2+\r(3))=5(2-eq\r(3)).∴经过5(2-eq\r(3))小时,物体甲在物体乙的正东方向.(2)设经过x小时,甲、乙两物体的距离为d.由余弦定理得cos60°=eq\f((4x)2+(10-2x)2-d2,2×4x×(10-2x))=eq\f(1,2),∴d2=28x2-80x+100,0<x≤5.∵函数y=28x2-80x+100的图像的对称轴x=eq\f(10,7)∈(0,5],∴x=eq\f(10,7)时,d最小.∴dmin=eq\f(10\r(21),7).[破题技法]测量角度问题的基本思路测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最终将解得的结果转化为实际问题的解.提示:方向角是相对于某点而言的,因此在确定方向角时,必需先弄清晰是哪一个点的方向角.在一次海上联合作战演习中,红方一艘侦察艇发觉在北偏东45°方向,相距12nmile的水面上,有蓝方一艘小艇正以每小时10nmile的速度沿南偏东75°方向前进,若红方侦察艇以每小时14nmile的速度沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解析:如图,设红方侦察艇经过x小时后在C处追上蓝方的小艇,则AC=14x,BC=10x,∠ABC=120°.依据余弦定理得(14x)2=122+(10x)2-240xcos120°,解得x=2.故AC=28,BC=20.依据正弦定理得eq\f(BC,sinα)=eq\f(AC,sin120°),解得sinα=eq\f(20sin120°,28)=eq\f(5\r(3),14).所以红方侦察艇所需的时间为2小时,角α的正弦值为eq\f(5\r(3),14).考点二测量高度挖掘1同一竖直平面内的高度/自主练透[例1]如图,为测一树的高度,在地面上选取A,B两点,在A,B两点分别测得树顶的仰角为30°,45°,且A,B两点之间的距离为10m,则树的高度h为()A.(5+5eq\r(3))m B.(30+15eq\r(3))mC.(15+30eq\r(3))m D.(15+3eq\r(3))m[解析]在△PAB中,由正弦定理,得eq\f(10,sin(45°-30°))=eq\f(PB,sin30°),因为sin(45°-30°)=sin45°cos30°-cos45°sin30°=eq\f(\r(6)-\r(2),4),所以PB=5(eq\r(6)+eq\r(2))(m),所以该树的高度h=PBsin45°=(5+5eq\r(3))(m).[答案]A挖掘2不同竖直平面内的高度/互动探究[例2]如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,求山高MN.[解析]在△ABC中,AC=100eq\r(2),在△MAC中,eq\f(MA,sin60°)=eq\f(AC,sin45°),解得MA=100eq\r(3),在△MNA中,eq\f(MN,100\r(3))=sin60°=eq\f(\r(3),2),故MN=150,即山高MN为150m.[破题技法]求解高度问题的三个关注点(1)在处理有关高度问题时,要理解仰角、俯角(在铅垂面上所成的角)、方向(位)角(在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时探讨的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清晰又不简单搞错.(3)留意山或塔垂直于地面或海平面,把空间问题转化为平面问题.考点三解三角形在平面几何中的应用挖掘1与三角形有关的传统文化/自主练透[例1](1)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的阅历方式为:弧田面积=eq\f(1,2)(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为eq\f(2π,3),半径等于4米的弧田,依据上述阅历公式计算所得弧田面积约是()A.6平方米 B.9平方米C.12平方米 D.15平方米[解析]如图,由题意可得∠AOB=eq\f(2π,3),OA=4,在Rt△AOD中,可得∠AOD=eq\f(π,3),∠DAO=eq\f(π,6),OD=eq\f(1,2)AO=eq\f(1,2)×4=2,所以可得矢=4-2=2,由AD=AO·sineq\f(π,3)=4×eq\f(\r(3),2)=2eq\r(3),可得弦=2AD=2×2eq\r(3)=4eq\r(3).所以,弧田面积=eq\f(1,2)(弦×矢+矢2)=eq\f(1,2)×(4eq\r(3)×2+22)=4eq\r(3)+2≈9平方米,故选B.[答案]B(2)《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与闻名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即S=eq\r(\f(1,4)\b\lc\[\rc\](\a\vs4\al\co1(c2a2-\b\lc\(\rc\)(\a\vs4\al\co1(\f(c2+a2-b2,2)))\s\up12(2)))).现有周长为2eq\r(2)+eq\r(5)的△ABC满意sinA∶sinB∶sinC=(eq\r(2)-1)∶eq\r(5)∶(eq\r(2)+1),试用以上给出的公式求得△ABC的面积为()A.eq\f(\r(3),4) B.eq\f(\r(3),2)C.eq\f(\r(5),4) D.eq\f(\r(5),2)[解析]因为sinA∶sinB∶sinC=(eq\r(2)-1)∶eq\r(5)∶(eq\r(2)+1),所以由正弦定理得a∶b∶c=(eq\r(2)-1)∶eq\r(5)∶(eq\r(2)+1),又a+b+c=2eq\r(2)+eq\r(5),所以a=eq\r(2)-1,b=eq\r(5),c=eq\r(2)+1,则ac=2-1=1,c2+a2-b2=6-5=1,故S=eq\r(\f(1,4)\b\lc\[\rc\](\a\vs4\al\co1(c2a2-\b\lc\(\rc\)(\a\vs4\al\co1(\f(c2+a2-b2,2)))\s\up12(2))))=eq\f(1,2)eq\r(1-\f(1,4))=eq\f(\r(3),4),故选A.[答案]A挖掘2多边形问题/互动探究[例2]如图,在平面四边形ABCD中,∠ABC=eq\f(3,4)π,AB⊥AD,AB=1.(1)若AC=eq\r(5),求△ABC的面积;(2)若∠ADC=eq\f(π,6),CD=4,求sin∠CAD.[解析](1)在△ABC中,由余弦定理得,AC2=AB2+BC2-2AB·BC·cos∠ABC,即5=1+BC2+eq\r(2)BC,解得BC=eq\r(2),所以△ABC的面积S△ABC=eq\f(1,2)AB×BC×sin∠ABC=eq\f(1,2)×1×eq\r(2)×eq\f(\r(2),2)=eq\f(1,2).(2)设∠CAD=θ,在△ACD中,由正弦定理得,eq\f(AC,sin∠ADC)=eq\f(CD,sin∠CAD),即eq\f(AC,sin\f(π,6))=eq\f(4,sinθ),①在△ABC中,∠BAC=eq\f(π,2)-θ,∠BCA=π-eq\f(3π,4)-(eq\f(π,2)-θ)=θ-eq\f(π,4),由正弦定理得eq\f(AC,sin∠ABC)=eq\f(AB,sin∠BCA),即eq\f(AC,sin\f(3π,4))=eq\f(1,sin(θ-\f(π,4))),②①②两式相除,得eq\f(sin\f(3π,4),sin\f(π,6))=eq\f(\f(4,sinθ),\f(1,sin(θ-\f(π,4)))),即4(eq\f(\r(2),2)sinθ-eq\f(\r(2),2)cosθ)=eq\r(2)sinθ,整理得sinθ=2cosθ.又sin2θ+cos2θ=1,故sinθ=eq\f(2\r(5),5),即sin∠CAD=eq\f(2\r(5),5).[破题技法]1.把所供应的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解.2.找寻各个三角形之间的联系,交叉运用公共条件,求出结果,求解时要敏

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论