《信号与线性系统分析基础》课件 刘秀环 4.2.2 Property 3-right shift in time-6.6 Causality and Stability of Discrete-Time Systems_第1页
《信号与线性系统分析基础》课件 刘秀环 4.2.2 Property 3-right shift in time-6.6 Causality and Stability of Discrete-Time Systems_第2页
《信号与线性系统分析基础》课件 刘秀环 4.2.2 Property 3-right shift in time-6.6 Causality and Stability of Discrete-Time Systems_第3页
《信号与线性系统分析基础》课件 刘秀环 4.2.2 Property 3-right shift in time-6.6 Causality and Stability of Discrete-Time Systems_第4页
《信号与线性系统分析基础》课件 刘秀环 4.2.2 Property 3-right shift in time-6.6 Causality and Stability of Discrete-Time Systems_第5页
已阅读5页,还剩210页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

信号与系统SignalsandSystems吉林大学PropertiesofLaplacetransform:RightShiftinTimeProperty3:RightshiftintimeProof:Property3:Rightshiftintime(3)Property3:RightshiftintimeSolution:信号与系统SignalsandSystems吉林大学PropertiesofLaplaceTransform:TimeScalingProperty4:TimescalingProof:信号与系统SignalsandSystems吉林大学PropertiesofLaplaceTransform:ConvolutionTheoremsProperty5:Convolutioninthet-domainProof:Property5:Convolutioninthet-domainContinued:Property

6:Convolutioninthes-domainProof:信号与系统SignalsandSystems吉林大学PropertiesofLaplaceTransform:Differentiationinthet-domainProperty7:Differentiationinthet-domainProof:信号与系统SignalsandSystems吉林大学PropertiesofLaplaceTransform:Integrationinthet-domainProperty8:Integrationinthet-domainProof:Property8:Integrationinthet-domain信号与系统SignalsandSystems吉林大学PropertiesofLaplaceTransform:DifferentiationandIntegrationinthes-DomainProperty9:Differentiationinthes-domainProof:Property10:Integrationinthes-domainProof:信号与系统SignalsandSystems吉林大学PropertiesofLaplaceTransform:InitialandFinal-ValuetheoremsProperty11:Initial-valuetheoremProof:Property12:Final-valuetheoremProof:信号与系统SignalsandSystems吉林大学ComputationoftheInverseLaplaceTransform(Ⅱ)PartialFractionExpansionComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(1)Conditions:ComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(2)ComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(3)信号与系统SignalsandSystems吉林大学SolvingtheDifferentialEquationsinthes-DomainSolvingthedifferentialequationsinthes-domain[Example]Given:Find:

Solvingthedifferentialequationsinthes-domainSolvingthedifferentialequationsinthes-domainSolvingthedifferentialequationsinthes-domain信号与系统SignalsandSystems吉林大学Thes-DomainRepresentationsofCircuits(I)Thes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThesameresistanceThes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThes-domainimpedanceThes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThes-domainimpedanceThes-domainrepresentationsofcircuits(I)2TheformsofKVLandKCLinthes-domain信号与系统SignalsandSystems吉林大学TheBlockDiagramofaSysteminthes-DomainTheblockdiagramofasysteminthes-domainScalarmultiplier1Adder/Subtractor2Theblockdiagramofasysteminthes-domainIntegrator3信号与系统SignalsandSystems吉林大学TheDefinitionofTransferFunctionanditsSolutionsThedefinitionoftransferfunctionanditssolutionsThetransferfunctionⅠHowtofind21.GiventhesystemdifferentialequationThedefinitionoftransferfunctionanditssolutionsHowtofind21.GiventhesystemdifferentialequationThedefinitionoftransferfunctionanditssolutions2.Giventheimpulseresponseh(t)Thedefinitionoftransferfunctionanditssolutions3.GiventhestructureofthecircuitUsingthedefinitioninthes-domainrepresentationofthecircuit.4.Usingthepole-zeroplot信号与系统SignalsandSystems吉林大学TheTransferFunctionandthePole-ZeroPlotThetransferfunctionandthepole-zeroplotPolesandzeros1Zeros:Poles:Thetransferfunctionandthepole-zeroplotThepole-zeroplot2Aplotinthecomplexplaneshowingthelocationsofallthepoles(markedby×)andallthezeros(markedby○)iscalledthepole-zeroplot.Zeros:Poles:信号与系统SignalsandSystems吉林大学ApplicationsofthePole-ZeroPlot:DeterminingtheFormofh(t)Thepoles

beinglocatedintheopen

left-halfcomplexplane1Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles

beinglocatedintheopen

left-halfcomplexplane1Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles

beinglocatedattheorigin2Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles

beinglocatedontheimaginaryaxis3Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles

beinglocatedintheopen

right-halfcomplexplane4Applicationsofthepole-zeroplot:Determiningtheformofh(t)信号与系统SignalsandSystems吉林大学Time-DomainAnalysisofDiscrete-TimeSystemsDiscrete-TimeSignalsDiscrete-TimeSignalsAdiscrete-timesignalf(k)hasvaluesforsomediscontinuouspointwhilehasnotdefinitionforotherpoints.k—integerDefinitionDiscrete-TimeSignalsAnalyticalmethod:Graphicalmethod:Sequencemethod:k=0RepresentationDiscrete-TimeSignalEnergyandPowerEnergy:Power:OperationofDiscrete-TimeSignalsAddition:Multiplication:Difference:forwarddifference:backwarddifferenceRunningsum:OperationofDiscrete-TimeSignalsTimeshift(m>0)RightshiftLeftshiftTransformationsoftheIndependentVariableOperationofDiscrete-TimeSignalsTimereversalTransformationsoftheIndependentVariablef(-k)isobtainedfromthesignalf(k)

byareflectionaboutk=0.BasicDiscrete-TimeSignalsUnitImpulseSequence(UnitSampleSequence)BasicDiscrete-TimeSignalsUnitStepSequenceBasicDiscrete-TimeSignalsRelationshipbetweend(k)ande(k)BasicDiscrete-TimeSignalsRectangularSequenceBasicDiscrete-TimeSignalsUnilateralexponentialsequenceswithrealvalues:f(k)=ak

(k)(aisarealnumber)BasicDiscrete-TimeSignalsUnitrampsequenceSinusoidalSequencesComplexExponentialSequences:Canda:complexnumbers信号与系统SignalsandSystems吉林大学RepresentationsofDiscrete-TimeSystemsRepresentationsofDiscrete-TimeSystemsAdiscrete-timesystemisasystemthattransformsdiscrete-timeinputsintodiscrete-timeoutputs.Definitionf(k):inputy(k):outputInput-outputrelation:f(k)→

y(k)RepresentationsofDiscrete-TimeSystemsnth-orderLinearConstant-CoefficientDifferenceEquation:LTISystemsDescribedbyDifferenceEquatioconstantsRepresentationsofDiscrete-TimeSystemsBlockDiagramRepresentationBasicelementsMultiplicationbyacoefficientAdderUnitDelayElementRepresentationsofDiscrete-TimeSystemsInterconnectionsofSystemsSeries(Cascade)interconnectionParallelinterconnectionFeedbackinterconnection信号与系统SignalsandSystems吉林大学Linearinput/outputdifferenceequationswithconstantcoefficientsInput:f(k)=0fork<0InitialCondition:y(0),y(1),y(2),…,y(n-1)InitialState:y(-1),y(-2),…,y(-n)Linearinput/outputdifferenceequationswithconstantcoefficientsEquation:Solution:Linearinput/outputdifferenceequationswithconstantcoefficientsTheHomogeneousSolutionHomogeneousequation

CharacteristicequationCharacteristicroot

j(j=1,2,3,

,n)HomogeneoussolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheHomogeneousSolutionExample:y(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2k,k

≥0,y(0)=0,y(1)=2.Findyh(k)

.Characteristicequation:Homogeneousequation

CharacteristicequationCharacteristicroot

j(j=1,2,3,

,n)HomogeneoussolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheParticularSolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheParticularSolutionExample:y(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2k,k

≥0,y(0)=0,y(1)=2.Findyp(k),k

≥0.Letyp(k)=P·2k,k

≥0Substitutethesystemequation:信号与系统SignalsandSystems吉林大学TheZero-InputResponse

and

TheZero-StateResponseTheZero-InputResponse

Characteristicequation

j,(j=1,2,3,

,n)CharacteristicrootZero-InputResponse

yzi

(0),yzi

(1),…,yzi

(n-1)y(-1),y(-2),…,y(-n)

yzi(k)=y(k)-

yzs(k)=y(k),k<0InitialconditionCharacteristicequation:Characteristicroots:Zero-InputResponse:Example:TheZero-InputResponsey(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2kε(k),y(-1)=0,y(-2)=1/2.Findyzi(k),k

≥0.yzi(k)+3yzi(k-1)+2yzi(k-2)=0TheZero-StateResponseCharacteristicequation

j

(j=1,2,3,

,n)Characteristicroot(distinctroots

j

)Zero-StateResponseyzs(-1)=yzs(-2)=…=yzs

(-n)=0Initialstateyzs(0),yzs

(1),…,yzs

(n-1)Initialcondition信号与系统SignalsandSystems吉林大学TheUnitSampleResponse

and

TheUnitStepResponseTheUnitSampleResponseDefinitionTheunitsampleresponseisthezero-stateresponseofthesystemresultingfromtheapplicationoftheunitpulse

(k).Denotedh(k)Initialstateh(-1)=h(-2)=…=h(-n)=0Initialconditionh(0),h(1),h(2),…,h(n-1)HowtofindSolvingadifferenceequationZ-transformTheUnitSampleResponseDeterminationk<0:

(k)

=0,h(k)=0k=0:

(k)

=1,h(0)——recursionk>0:

(k)

=0,h(k)——solutionofahomogeneousequationLTI

system:LetthenCi:determinedbyh1(1),h1(2),…,h1(n)TheUnitStepResponseDefinitionTheunitstepresponseisthezero-stateresponseofthesystemresultingfromtheapplicationoftheunitstepsequencee

(k).Denotedg(k)Initialstateg(-1)=g(-2)=…=g(-n)=0Relationshipbetweenh(k)andg(k)信号与系统SignalsandSystems吉林大学ConvolutionSumConvolutionSum

Ingeneral,twodiscrete-timesignalsf1(k)andf2(k)DefinitionExample1:ConvolutionSumConvolution-SumRepresentationofLTIdiscrete-timesystemsThezero-stateresponse:ConvolutionSum:GraphicalRepresentationGraphicalRepresentationoftheconvolutionsumProcedure:Step1.Drawf1(i)andf2(i)Step2.Reverse

f2(i):f2(i)

f2(-i)Step3.Shift

f2(-i)bykpositiontotheright:f2(-i)

f2(k-i)

Step4.Multiplicationoff1(i)withf2(k-i):

f1(i)f2(k-i)

Step5.Summationoftheproductforallvaluesofi

yieldsonevalueofy(k)Step6.Repeatsteps3and5forallvaluesofk信号与系统SignalsandSystems吉林大学PropertiesoftheConvolutionSumPropertiesoftheConvolutionSumCommutativityProof:PropertiesoftheConvolutionSumAssociativityProof:CascadeinterconnectionofLTIsystemsPropertiesoftheConvolutionSumDistributivitywithadditionProof:ParallelinterconnectionofLTIsystemsPropertiesoftheConvolutionConvolutionwiththeunitpulseProof:Ifk1=0,thenPropertiesoftheConvolutionShiftpropertyProof:Iff(k)=f1(k)*f2(k),then

信号与系统SignalsandSystems吉林大学TheAnalysisofDiscrete-TimeSystemsinthez-DomainThez-TransformDefinitionofthez-TransformDefinitionofthez-TransformIntuitionontheRelationbetweenZTandLTLT:Let:Definitionofthez-TransformDefinitionBilateral(two-sided)z-Transform:Unilateral(one-sided)z-Transform:Thetransformpairnotation:信号与系统SignalsandSystems吉林大学Thez-TransformCommonz-transformpairsCommonz-transformpairsUnitSampleSequenceCommonz-transformpairsOne-sideExponentialSequencewhereaisarealorcomplexnumber.UnitStepSequenceCommonz-transformpairswhere

aisarealorcomplexnumber.信号与系统SignalsandSystems吉林大学TheRegionofConvergenceforthez-TransformDefinitionTheRegionofConvergenceforthez-TransformThesetofallcomplexnumberszsuchthatthesummationontheright-handside

convergesiscalledtheregionofconvergence(ROC)ofthez-transformF(z).F(z)converges:f(k)z-kisabsolutelysummableFinite-durationsequenceTheRegionofConvergenceforthez-Transformf(k)=0,k

<k1,k>k2,k1<k2k1<0,k2>0:

k1<0,k2

0:k10,k2

>0:0<|z|<

|z|<

|z|>0Example:CausalsequenceTheRegionofConvergenceforthez-Transformf(k)=0,k<0Example:z-planeak

(k),aisarealorcomplexnumber.AnticausalsequenceTheRegionofConvergenceforthez-TransformExample:f(k)=0,k≥0f(k)=-ak

(-k-1),aisarealorcomplexnumber.Two-sidedsequenceTheRegionofConvergenceforthez-Transformk=-∞→+∞

0<R1<R2<:R1<|z|<R2

R1>R2

:

ROCdoesnotconvergeTheRegionofConvergenceforthez-TransformROCisboundedbypolesorextendstoinfinity.F(z)isrational:f(k)ROCrightsidedoutsidetheoutermostpole——outsidethecircleofradiusequaltothelargestmagnitudeofthepolesofF(z)leftsidedinsidetheinnermostnonzeropole——insidethecircleofradiusequaltothesmallestmagnitudeofthepolesofF(z)otherthananyatz=0andextendinginwardtoandpossiblyincludingz=0.信号与系统SignalsandSystems吉林大学Propertiesofthez-Transform——LinearityIff1(k)

F1(z),

1<

z

<

1,f2(k)

F2(z),

2<

z

<

2,thenLinearityExample:Iff1(k)

F1(z),

1<

z

<

1,f2(k)

F2(z),

2<

z

<

2,thenLinearityExample:信号与系统SignalsandSystems吉林大学Propertiesofthez-Transform——TimeShiftingTimeShiftingExample:Bilateralz-TransformIff(k)

F(z),

<

z

<

,thenwheremisapositiveinteger.TimeShiftingProof:Unilateralz-Transform——RightshiftIff(k)

F(z),

z

>

,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——RightshiftIff(k)=0,k<0,thenExample:Iff(k)

F(z),

z

>

,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——LeftshiftIff(k)

F(z),

z

>

,thenwheremisapositiveinteger.Proof:TimeShiftingUnilateralz-Transform——LeftshiftIff(k)

F(z),

z

>

,thenwheremisapositiveinteger.Example:

(k+1)信号与系统SignalsandSystems吉林大学Propertiesofthez-Transform——Scalinginthez-DomainScalinginthez-DomainProof:Iff(k)

F(z),R1<|z|<R2

,thenaisanonzerorealorcomplexnumber.ROCofF(z):ROCof

:Scalinginthez-DomainIff(k)

F(z),R1<|z|<R2

,thenaisanonzerorealorcomplexnumber.Example:

aksin(

k)

(k),0<a<1Scalinginthez-DomainIff(k)

F(z),R1<|z|<R2

,thenaisanonzerorealorcomplexnumber.Example:(-1)k

(k)信号与系统SignalsandSystems吉林大学Propertiesofthez-Transform——ConvolutionConvolutionProof:Iff1(k)

F1(z),

1<z<

1,f2(k)

F2(z),

2<z<

2,thenConvolutionIff1(k)

F1(z),

1<z<

1,f2(k)

F2(z),

2<z<

2,thenExample:(k+1)

(k)LTIsystems:信号与系统SignalsandSystems吉林大学Propertiesofthez-Transform——DifferentiationandIntegralinthez-DomainDifferentiationinthez-DomainProof:Iff(k)

F(z),

<

z

<

,then

wherekisanypositiveinteger.Differentiationinthez-DomainIff(k)

F(z),

<

z

<

,then

wherekisanypositiveinteger.Example:Ifa=1,thenDifferentiationinthez-DomainIff(k)

F(z),

<

z

<

,then

wherekisanypositiveinteger.Integralinthez-DomainProof:Iff(k)

F(z),

<

z

<

,then

(misaninteger,andk+m>0)Integralinthez-DomainIff(k)

F(z),

<

z

<

,then

(misaninteger,andk+m>0)Example:Integralinthez-DomainIff(k)

F(z),

<

z

<

,then

(misaninteger,andk+m>0)m=0,k>0:信号与系统SignalsandSystems吉林大学Propertiesofthez-Transform——Reflectioninthek-domainReflectioninthek-domainProof:Iff(k)

F(z),

<

z

<

,then

Example:信号与系统SignalsandSystems吉林大学Propertiesofthez-Transform——SummationSummationProof:Iff(k)

F(z),

<

z

<

,then

Example:信号与系统SignalsandSystems吉林大学Propertiesofthez-Transform——Initial-ValueTheoremandFinal-ValueTheoremInitial-ValueTheoremProof:Iff(k)=0,k<0,andf(k)

F(z),then

Example:0Thez-transformofacausalsequencef(k)isfindf(0).Final-ValueTheoremProof:Iff(k)=0,k<0,f(k)

F(z),a<

z<,0≤a<1,then

Final-ValueTheoremIff(k)=0,k<0,f(k)

F(z),a<

z<,0≤a<1,then

Example:f(k)=0,k<0. aisarealnumber,findf(

).Final-ValueTheorem√√××Final-ValueTheoremIff(k)=0,k<0,f(k)

F(z),a<

z<,0≤a<1,then

Example:f(k)=0,k<0. aisarealnumber,findf(

).Final-ValueTheoremIfF(z)isrationalandthepolesof(z-1)F(z)havemagnitudes<1,then

Example:Thez-transformofacausalsequencef(k)is

Poles:信号与系统SignalsandSystems吉林大学TheInversez-TransformTheInversez-Transform(IZT)Integral:DefinitionalongacounterclockwiseclosedcircularcontourthatiscontainedintheROCofF(z).AlternativeproceduresPower-seriesexpansionsPartialfractionexpansionsROCandtheInversez-TransformROCf(k)Causalsequence|z|>af1(k)e

(k)Anticausalsequence|z|<bf2(k)e

(-k-1)Two-sidedsequencea<|z|<b

f1(k)e(k)+

f2(k)e

(-k-1)信号与系统SignalsandSystems吉林大学TheInversez-Transform——PartialfractionexpansionsPartialfractionexpansionsRationalpolynomial:Procedure:PartialfractionexpansionsF(z)f(k)×zIZTPartialfractionexpansions

DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(1)Example:Partialfractionexpansions

DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(2)Example:Partialfractionexpansions

DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(3)Example:Partialfractionexpansions

DistinctPolesz1,2=ae±jbROC:|z|>

Complex

Poles:Partialfractionexpansions

DistinctPolesz1,2=ae±jbComplex

Poles:Example:PartialfractionexpansionsRepeatePolesSupposethatthepolez1isrepeatedrtimes.Matchingcoefficients:Example:PartialfractionexpansionsExample:Step1DividethroughtoobtainwhereF1(z)isstrictlyproper.Step2CarryoutthepartialfractionexpansionofF1(z)and,knowingtheROC,obtaintheinversez-transform.信号与系统SignalsandSystems吉林大学z-DomainAnalysis—TransformoftheInput/outputDifferenceEquationTransformoftheInput/outputDifferenceEquationLTIsystem:Input:f(k)=0,k<0Initialstate:y(-1),y(-2),…,y(-n)z-Transform:Y(z)=Yzi(z)+Yzs(z)IZT:y(k)=yzi(k)+yzs(k)TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.信号与系统SignalsandSystems吉林大学z-DomainAnalysis—TheSystemFunctionTheSystemFunction(TransferFunction)DefinitionDeterminationofthesystemfunction(1)

H(z)=Yzs(z)/F(z)(2)H(z)=Z[h(k)]SystemFunctionofInterconnectionsSeriesconnectionH(z)ParallelconnectionH(z)Parallelconnection

H(z)SystemFunctionforInterconnectionsofLTISystemsExample:Determinethezero-stateoftheLTIsystem.Pole-zeroPlotoftheSystemFunctionPole-zeroplotExample:Aplotofthelocationsinthecomplexplaneofthepolesandzeros.Zerosro

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论