版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页湖南省邵阳市城步县2025届九年级数学第一学期开学学业水平测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列多项式中,能用完全平方公式分解因式的是()A.x2﹣x+1 B.1﹣2xy+x2y2 C.m2﹣2m﹣1 D.2、(4分)如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20,那么△DEF的周长是()A.20 B.15 C.10 D.53、(4分)下列说法,你认为正确的是()A.0的倒数是0 B.3-1=-3 C.是有理数 D.34、(4分)直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是()A.(-4,0) B.(-1,0) C.(0,2) D.(2,0)5、(4分)道路千万条,安全第一条,下列交通标志是中心对称图形的为()A. B. C. D.6、(4分)不等式的解在数轴上表示正确的是()A. B.C. D.7、(4分)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A. B. C. D.8、(4分)如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一直线上,则三角板ABC旋转的度数是()A.60° B.90° C.120° D.150°二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x尺,可列方程为_____.10、(4分)如图,在四边形ABCD中,∠A=90°,M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),E、F分别为DM,MN的中点,若AB=23, 11、(4分)如图,函数y=ax+4和y=bx的图象相交于点A,则不等式bx≥ax+4的解集为_____.12、(4分)如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有_____(只填序号).13、(4分)如图,身高1.6米的小明站在处测得他的影长为3米,影子顶端与路灯灯杆的距离为12米,则灯杆的高度为_______米.三、解答题(本大题共5个小题,共48分)14、(12分)一只不透明的袋子中装有3个红球、2个黄球和1个白球,每个球除颜色外都相同,将球摇匀,从中任意摸出1个球.(1)摸到的球的颜色可能是______;(2)摸到概率最大的球的颜色是______;(3)若将每个球都编上号码,分别记为1号球(红)、2号球(红)、3号球(红)、4号球(黄)、5号球(黄)、6号球(白),那么摸到1~6号球的可能性______(填相同或者不同);(4)若在袋子中再放一些这样的黄球,从中任意摸出1个球,使摸到黄球的概率是,则放入的黄球个数是______.15、(8分)小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板按如图所示的位置摆放,、、三点在同一直线上,,,,,量得.(1)试求点到的距离.(2)试求的长.16、(8分)如图,在平行四边形中,对角线、相交于点,是延长线上的点,且为等边三角形.(1)四边形是菱形吗?请说明理由;(2)若,试说明:四边形是正方形.17、(10分)如图中的虚线网格我们称为正三角形网格,它的每一个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.(1)图①中,已知四边形ABCD是平行四边形,求△ABC的面积和对角线AC的长;(2)图②中,求四边形EFGH的面积.18、(10分)长方形纸片中,,,把这张长方形纸片如图放置在平面直角坐标系中,在边上取一点,将沿折叠,使点恰好落在边上的点处.(1)点的坐标是____________________;点的坐标是__________________________;(2)在上找一点,使最小,求点的坐标;(3)在(2)的条件下,点是直线上一个动点,设的面积为,求与的函数关系式.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在△ABC中,BC=a.作BC边的三等分点C1,使得CC1:BC1=1:2,过点C1作AC的平行线交AB于点A1,过点A1作BC的平行线交AC于点D1,作BC1边的三等分点C2,使得C1C2:BC2=1:2,过点C2作AC的平行线交AB于点A2,过点A2作BC的平行线交A1C1于点D2;如此进行下去,则线段AnDn的长度为______________.20、(4分)已知y是x的一次函数下表列出了部分对应值,则m=_______21、(4分)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是.22、(4分)一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为_____.23、(4分)利用因式分解计算:2012-1992=_________;二、解答题(本大题共3个小题,共30分)24、(8分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示:应聘者面试笔试甲8790乙9182若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?25、(10分)一个不透明的袋子里装有黑白两种颜色的球其40只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近(精确到0.1);(2)估计袋中黑球的个数为只:(3)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了个黑球.26、(12分)已知一次函数y=kx+b的图象经过点A(−1,−1)和点B(1,−3).求:(1)求一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
利用完全平方公式的结构特征判断即可.【详解】解:选项中的4个多项式中,能用完全平方公式分解因式的是1-2xy+x2y2=(1-xy)2,
故选B.此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.2、C【解析】试题分析::∵D、E分别是△ABC的边BC、AB的中点,∴DE=AC,同理EF=BC,DF=AB,∴C△DEF=DE+EF+DF=(AC+BC+AB)=×20=1.故选C.考点:三角形的中位线定理3、D【解析】
根据1没有倒数对A进行判断;根据负整数指数幂的意义对B进行判断;根据实数的分类对C进行判断;根据算术平方根的定义对D进行判断.【详解】A.1没有倒数,所以A选项错误;B.3﹣1,所以B选项错误;C.π是无理数,所以C选项错误;D.3,所以D选项正确.故选D.本题考查了算术平方根:一个正数的正的平方根叫这个数的算术平方根,1的算术平方根为1.也考查了倒数、实数以及负整数指数幂.4、D【解析】试题分析:将y=2x+2沿y轴向下平移6个单位后的解析式为:y=2x-4,当y=0时,则x=2,即图像与x轴的交点坐标为(2,0).考点:一次函数的性质5、B【解析】
结合中心对称图形的概念求解即可.【详解】解:A、不是中心对称图形,本选项错误;
B、是中心对称图形,本选项正确;
C、不是中心对称图形,本选项错误;
D、不是中心对称图形,本选项错误.
故选:B.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、C【解析】
先求出不等式的解集,再在数轴上表示出来即可.【详解】解:解不等式1+x>3得,x>2,
在数轴上表示为:故选:C本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.7、A【解析】
∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!8、D【解析】试题分析:根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.旋转角是∠CAC′=180°﹣30°=150°.故选D.考点:旋转的性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、(x﹣3)2+64=x2【解析】
设绳索长为x尺,根据勾股定理列出方程解答即可【详解】解:设绳索长为x尺,可列方程为(x﹣3)2+82=x2,故答案为:(x﹣3)2+64=x2本题考查了勾股定理在实际生活中的应用,找出等量关系,正确列出一元二次方程是解题的关键.10、1【解析】
连接BD、DN,根据勾股定理求出BD,根据三角形中位线定理解答.【详解】解:连接BD、DN,在RtΔABD中,∵点E、F分别为DM、MN的中点,∴EF=1由题意得,当点N与点B重合时,DN最大,∴DN的最大值是4,∴EF长度的最大值是1,故答案为:1.本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.11、x≥2【解析】
根据一元一次函数和一元一次方程的关系,从图上直接可以找到答案.【详解】解:由bx≥ax+4,即函数y=bx的图像位于y=ax+4的图像的上方,所对应的自变量x的取值范围,即为不等式bx≥ax+4的解集.本题参数较多,用代数的方法根本不能解决,因此数形结合成为本题解答的关键.12、①②④⑤【解析】
①②∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=⊂FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=,MC=DF=﹣2,∴FC=2﹣DF=2﹣(﹣2)=4﹣,S△AFC=CF•AD≠1,所以选项③不正确;④AF===,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;⑤在Rt△FEC中,EG⊥FC,∴=FG•CG,cos∠FCE=,∴CG===1,∴DG=CG,∴=FG•DG,故选项⑤正确;本题正确的结论有4个,故答案为①②④⑤.13、【解析】
根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似解答.【详解】解:如图:∵AB∥DE,∴CD:BC=DE:AB,∴1.6:AB=3:12,∴AB=6.1米,∴灯杆的高度为6.1米.答:灯杆的高度为6.1米.故答案为:6.1.本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出灯杆的高度,体现了方程的思想.三、解答题(本大题共5个小题,共48分)14、(1)红、黄、白;(2)红色;(3)相同;(1)1【解析】
(1)根据袋子中装有3个红球、2个黄球和1个白球,每个球除颜色外都相同,可知摸到的球的颜色可能是红、黄、白;(2)哪种球的数量最多,摸到那种球的概率就最大;(3)根据概率公式可得答案;(1)设放入的黄球个数是x,根据摸到黄球的概率是,列出关于x的方程,解方程即可.【详解】解:(1)根据题意,可得摸到的球的颜色可能是红、黄、白.故答案为红、黄、白;(2)根据题意,可得摸到概率最大的球的颜色是红色.故答案为红色;(3)∵将每个球都编上号码,分别记为1号球(红)、2号球(红)、3号球(红)、1号球(黄)、5号球(黄)、6号球(白),∴摸到1~6号球的概率都是,即摸到1~6号球的可能性相同.故答案为相同;(1)设放入的黄球个数是x,根据题意得,=,解得x=1.故答案为1.本题考查了概率公式,属于概率基础题,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15、(1)点与之间的距离为:;(2).【解析】
(1)根据题意得出∠DFE=30°,则EF=2DE=16,进而利用勾股定理得出DF的长,进而得出答案;(2)直接利用勾股定理得出DM的长,进而得出MB=FM,求出答案.【详解】解:(1)如图,过点作于点,在中,,,,则,故,,∵,∴,在中,,即点与之间的距离为:;(2)在中,,∵,∴,又∵,是等腰直角三角形,∴,∴.此题考查勾股定理,平行线的性质,解题关键在于作辅助线16、(1)四边形为菱形,理由见解析;(2)见解析【解析】
(1)根据“对角线互相垂直的平行四边形是菱形”即可求证.(2)根据“有一个角是90°的菱形是正方形”即可求证.【详解】(1)四边形为菱形,理由:在平行四边形中,,是等边三角形.,又、、、四点在一条直线上,.平行四边形是菱形.(对角线互相垂直的平行四边形是菱形)(2)由是等边三角形,,得到,,..,四边形是菱形,,,四边形是正方形.(有一个角是90°的菱形是正方形)本题考查了平行四边形的性质以及菱形、正方形的判定定理,熟练掌握相关性质定理是解答本题的关键.17、(1)△ABC的面积为,AC=;(2)四边形EFGH的面积为.【解析】
(1)首先过点A作AK⊥BC于K,由每一个小三角形都是边长为1个单位长度的正三角形,可求得每一个小正三角形的高为,进一步可求得△ABC的面积,然后由勾股定理可求得对角线AC的长;(2)过点E作EP⊥FH于P,则四边形EFGH的面积=2S△EFH=2××EP×FH=EP×FH,再代入数据计算即可得出结果.【详解】解:(1)如图③,过点A作AK⊥BC于K,∵每一个小三角形都是边长为1个单位长度的正三角形,∴每一个小正三角形的高为,∴.∴△ABC的面积=;∵BK=,∴.∴.(2)如图④,过点E作EP⊥FH于P,则EP=,由题意可得四边形EFGH的面积=2S△EFH=2××EP×FH=EP×FH=.此题考查了平行四边形的性质、勾股定理和等边三角形的性质,解题的关键正确理解题意,作出所需辅助线,注意数形结合去思考分析,熟知等边三角形的性质和有关计算.18、(1)(0,3);(﹣4,0);(2);(3)【解析】
(1)根据折叠性质求出BF,再利用勾股定理求出CF,从而得出OF,在△EOF中设未知数的方法根据勾股定理列出方程求解即可.(2)作E关于AB的对称点,连接对称点到F,利用勾股定理求出长度即可.(3)利用待定系数法求出PF的表达式,再根据面积公式代入即可.【详解】(1)由折叠的性质可得BF=AB=10,∵BC=8,∠BCF=90°,∴CF=,∵OC=AB=10,∴OF=10-6=4,即F的坐标为(﹣4,0),设AE为x,则EF也为x,EO为8-x,根据勾股定理得:42+(8-x)2=x2,解得x=1.∴EO=8-1=3,即E的坐标为(0,3).(2)作E关于AB的对称点E’,连接E’F交AB于P,此时E’F即为PE+PF最小值.根据对称性可知AE’=AE=1,则OE’=1+8=13,根据勾股定理可得:E’F=.(3)根据题意可得S=.设直线PF的表达式为:y=kx+13,将点F(﹣4,0)代入,解得k=,∴PF的表达式为:,∴本题考查一次函数与几何的动点问题,关键在于熟练掌握此类型辅助线的做法.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.【详解】∵A1C1∥AC,A1D1∥BC,∴四边形A1C1CD1为平行四边形,∴A1D1=C1C=a=,同理,四边形A2C2C1D2为平行四边形,∴A2D2=C1C2=a=,……∴线段AnDn=,故答案为:.本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.20、1【解析】
设一次函数解析式为y=kx+b,把两组对应值分别代入得到k、b的方程组,然后解方程组求出k、b的值,则可确定一次函数解析式,再计算自变量为0时的函数值即可.【详解】解:设一次函数解析式为y=kx+b,把x=1,y=3;x=2,y=5代入得,解得所以一次函数的解析式为:y=2x+1当x=0时,y=2x+1=1,即m=1.故答案为1.本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的直代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.21、10%.【解析】
设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.【详解】设平均每次降价的百分率为,根据题意列方程得,,解得,(不符合题意,舍去),答:这个百分率是.故答案为.本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.22、15或16或1【解析】试题分析:根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为1,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为15,故原多边形的边数可以为15,16或1.故答案为15,16或1.考点:多边形内角和与外角和.23、800【解析】分析:先利用平方差公式分解因式,然后计算即可求解.详解:2012-1992=(201+199)(201-199)=800.故答案为800.点睛:本题考查了因式分解在进行有理数的乘法中的运用,涉及的是平方差公式的运用,使运算简便.二、解答题(本大题共3个小题,共30分)24、甲将被录取【解析】试题分析:根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.试题解析:甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厨卫家电项目备案申请报告可行性研究报告
- 2025年度个人别墅防水防霉处理合同范本4篇
- 2025年无纺环保袋定制及环保理念推广合同3篇
- 《全球物流巨头运营策略》课件
- 2025年绿色建筑用地土地平整及配套基础设施建设合同3篇
- 2025年国家管网集团西气东输公司招聘笔试参考题库含答案解析
- 二零二五年度明光幼儿园食堂改造与后勤服务提升合同4篇
- 2025年浙江永嘉投资集团有限公司招聘笔试参考题库含答案解析
- 二零二五版二手房买卖合同中的违约赔偿标准约定3篇
- 2025年安徽宿州市城市建设投资集团控股有限公司招聘笔试参考题库附带答案详解
- 带状疱疹护理查房课件整理
- 年月江西省南昌市某综合楼工程造价指标及
- 奥氏体型不锈钢-敏化处理
- 作物栽培学课件棉花
- 交通信号控制系统检验批质量验收记录表
- 弱电施工验收表模板
- 绝对成交课件
- 探究基坑PC工法组合钢管桩关键施工技术
- 国名、语言、人民、首都英文-及各地区国家英文名
- API SPEC 5DP-2020钻杆规范
- 组合式塔吊基础施工专项方案(117页)
评论
0/150
提交评论