湖南省浏阳市部分学校2024-2025学年数学九年级第一学期开学复习检测模拟试题【含答案】_第1页
湖南省浏阳市部分学校2024-2025学年数学九年级第一学期开学复习检测模拟试题【含答案】_第2页
湖南省浏阳市部分学校2024-2025学年数学九年级第一学期开学复习检测模拟试题【含答案】_第3页
湖南省浏阳市部分学校2024-2025学年数学九年级第一学期开学复习检测模拟试题【含答案】_第4页
湖南省浏阳市部分学校2024-2025学年数学九年级第一学期开学复习检测模拟试题【含答案】_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页湖南省浏阳市部分学校2024-2025学年数学九年级第一学期开学复习检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若一组数据的方差是3,则的方差是()A.3 B.6 C.9 D.122、(4分)如图,在▱ABCD中,,的平分线与DC交于点E,,BF与AD的延长线交于点F,则BC等于A.2 B. C.3 D.3、(4分)如图,已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(10,0),点B(0,6),点P为BC边上的动点,将△OBP沿OP折叠得到△OPD,连接CD、AD.则下列结论中:①当∠BOP=45°时,四边形OBPD为正方形;②当∠BOP=30°时,△OAD的面积为15;③当P在运动过程中,CD的最小值为1﹣6;④当OD⊥AD时,BP=1.其中结论正确的有()A.1个 B.1个 C.3个 D.4个4、(4分)下列四组线段中,不能构成直角三角形的是()A.4,5,6 B.6,8,10 C.7,24,25 D.5,3,45、(4分)在菱形ABCD中,,点E为AB边的中点,点P与点A关于DE对称,连接DP、BP、CP,下列结论:;;;,其中正确的是A. B. C. D.6、(4分)某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如表所示:使用寿命x/h60≤x<100100≤x<140140≤x<180灯泡只数303040这批灯泡的平均使用寿命是()A.112h B.124h C.136h D.148h7、(4分)下列各表达式不是表示与x的函数的是()A.y=3x2 B.y=128、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=2,CE=6,H是AF的中点,那么CH的长是()A.2.5 B.2 C. D.4二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.10、(4分)如图,正方形的边长为6,点是上的一点,连接并延长交射线于点,将沿直线翻折,点落在点处,的延长线交于点,当时,则的长为________.11、(4分)若a=,b=,则=_______.12、(4分)如图,在平面直角坐标系中,▱ABCD的顶点坐标分别为A(3,a)、B(2,2)、C(b,3)、D(8,6),则a+b的值为_____.13、(4分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=_____cm.三、解答题(本大题共5个小题,共48分)14、(12分)如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.15、(8分)如图,DB∥AC,DE∥BC,DE与AB交于点F,E是AC的中点.(1)求证:F是AB的中点;(2)若要使DBEA是矩形,则需给△ABC添加什么条件?并说明理由.16、(8分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△BDC∽△ABC;(2)如果BC=,AC=3,求CD的长.17、(10分)某工人为一客户制作一长方形防盗窗,为了牢固和美观,设计如图所示,中间为三个菱形,其中左右为两个全等的大菱形,中间为一个小菱形,竖着的铁棍的间距是相等的,尺寸如图所示(单位:m),工人师傅要做这样的一个防盗窗,总共需要多长的铁棍(不计损耗?)18、(10分)某校围绕“扫黑除恶”专项斗争进行了普法宣传,然后在各班级分别随机抽取了5名同学进行了测试.规定:95分或以上为优秀。其中八(1)班和八(2)班成绩如下:八(1)班:100,100,90,90,90;八(2)班:95,95,95,95,90;(1)八(1)班和八(2)班的优秀率分别是多少?(2)通过计算说明:哪个班成绩相对整齐?(3)若该校共有1000名学生,则通过这两个班级的成绩分析:该校大约有多少学生达到优秀?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)“两直线平行,内错角相等”的逆命题是__________.20、(4分)把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是_________________.21、(4分)如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(-10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是______.22、(4分)两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面积之和为130cm1,那么较小的多边形的面积是_____cm1.23、(4分)如图,在矩形纸片ABCD中,AB=6cm,BC=8cm,将矩形纸片折叠,使点B与点D重合,那么△DCF的周长是___cm.二、解答题(本大题共3个小题,共30分)24、(8分)八年级全体同学参加了学校捐款活动,随机抽取了部分同学捐款的情况统计图如图所示(1)本次共抽查学生人,并将条形统计图补充完整;(2)捐款金额的众数是,中位数是;(3)在八年级600名学生中,捐款20元及以上的学生估计有人.25、(10分)在如图平面直角坐标系中,直线l分别交x轴、y轴于点A(3,0)、B(0,4)两点,动点P从点O开始沿OA向点A以每秒个单位长度运动,动点Q从点B开始沿BO向点O以每秒个单位长度运动,过点P作y轴的平行线交直线AB于点M,连接PQ.且点P、Q分别从点O、B同时出发,运动时间为t秒.(1)请直接写出直线AB的函数解析式:;(2)当t=4时,四边形BQPM是否为菱形?若是,请说明理由;若不是,请求出当t为何值时,四边形BQPM是菱形.26、(12分)(1)已知一组数据8,3,m,2的众数是3,求出这组数据的平均数;(2)解方程:.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

先根据的方差是3,求出数据的方差,进而得出答案.【详解】解:∵数据x1,x2,x3,x4,x5的方差是3,∴数据2x1,2x2,2x3,2x4,2x5的方差是4×3=12;∴数据的方差是12;故选:D.本题考查了方差的定义.当数据都加上一个数时,平均数也加这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数时,平均数也乘以这个数,方差变为这个数的平方倍.2、B【解析】

根据平行四边形性质证,△AEF≌△AEB,EF=EB,AB=AF=1,再证△DEF≌△CEB,得BC=DF,可得AF=AD+DF=AD+BC=2BC=1.【详解】解:因为,四边形ABCD是平行四边形,所以,AD∥BC,AD=BC∠C=∠FDE,∠EBC=∠F因为,的平分线与DC交于点E,所以,∠FAE=∠BAE,∠AEB=∠AEF所以,△AEF≌△AEB所以,EF=EB,AB=AF=1所以,△DEF≌△CEB所以,BC=DF所以,AF=AD+DF=AD+BC=2BC=1所以,BC=2.1.故选B.本题考核知识点:平行四边形、全等三角形.解题关键点:熟记平行四边形性质、全等三角形判定和性质.3、D【解析】

①由矩形的性质得到,根据折叠的性质得到,,,推出四边形是矩形,根据正方形的判定定理即可得到四边形为正方形;故①正确;②过作于,得到,,根据直角三角形的性质得到,根据三角形的面积公式得到的面积为,故②正确;③连接,于是得到,即当时,取最小值,根据勾股定理得到的最小值为;故③正确;④根据已知条件推出,,三点共线,根据平行线的性质得到,等量代换得到,求得,根据勾股定理得到,故④正确.【详解】解:①四边形是矩形,,将沿折叠得到,,,,,,,,四边形是矩形,,四边形为正方形;故①正确;②过作于,点,点,,,,,,,的面积为,故②正确;③连接,则,即当时,取最小值,,,,,即的最小值为;故③正确;④,,,,,,三点共线,,,,,,,,,故④正确;故选:.本题考查了正方形的判定和性质,矩形的判定和性质,折叠的性质,勾股定理,三角形的面积的计算,正确的识别图形是解题的关键.4、A【解析】

由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方,即可解答.【详解】解:A、42+52≠62,故不是直角三角形,符合题意;B、62+82=102,能构成直角三角形,不符合题意;C、72+242=252,能构成直角三角形,不符合题意;D、32+42=52,能构成直角三角形,不符合题意.故选:A.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、B【解析】

根据菱形性质和轴对称性质可得AP⊥DE,PA=PB,即DE垂直平分PA,由中垂线性质得,PD=CD,PE=AE,由三角形中线性质得PE=,得三角形ABP是直角三角形;由等腰三角形性质得,∠DAP=∠DPA,∠DCP=∠DPC,所以,∠DPA+∠DPC=∠DAP+∠DCP=.【详解】连接PE,因为,四边形ABCD是菱形,所以,AB=BC=CD=AD,因为,点P与点A关于DE对称,所以,AP⊥DE,PA=PB,即DE垂直平分PA,所以,PD=CD,PE=AE,又因为,E是AB的中点,所以,AE=BE,所以,PE=,所以,三角形ABP是直角三角形,所以,,所以,.因为DP不在菱形的对角线上,所以,∠PCD≠30〬,又DC=DP,所以,,因为,DA=DP=DC,所以,∠DAP=∠DPA,∠DCP=∠DPC,所以,∠DPA+∠DPC=∠DAP+∠DCP=,即.综合上述,正确结论是.故选B本题考核知识点:菱形性质,轴对称性质,直角三角形中线性质.解题关键点:此题比较综合,要灵活运用轴对称性质和三角形中线性质和等腰三角形性质.6、B【解析】

根据图表可知组中值,它们的顺序是80,120,160,然后再根据平均数的定义求出即可,平均数是指在一组数据中所有数据之和再除以数据的个数.【详解】解:这批灯泡的平均使用寿命是=124(h),故选B.平均数在实际生活中的应用是本题的考点,解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.7、C【解析】

根据函数的概念进行判断。满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可得出答案.【详解】解:A、y=3x2对于x的每一个取值,y都有唯一确定的值,所以y是x的函数,不符合题意;

B、y=12对于x的每一个取值,y都有唯一确定的值是12,所以y是x的函数,不符合题意;

C、y=±xx>0对于x的每一个取值,y都有两个值,所以y不是x的函数,符合题意;

D、y=3x+1对于x的每一个取值,y都有唯一确定的值,所以y是x主要考查了函数的概念.函数的概念:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.8、B【解析】

连接AC、CF,根据正方形的性质求出AC、CF,并判断出△ACF是直角三角形,再利用勾股定理列式求出AF,然后根据直角三角形斜边上的中线等于斜边的一半可求解.【详解】如图,连接AC、CF,在正方形ABCD和正方形CEFG中,AC=BC=2,CF=CE=6,∠ACD=∠GCF=45°,所以,∠ACF=45°+45°=90°,所以,△ACF是直角三角形,由勾股定理得,AF==4,∵H是AF的中点,∴CH=AF=×4=2.故选:B.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,难点在于作辅助线构造出直角三角形.二、填空题(本大题共5个小题,每小题4分,共20分)9、(5,1)【解析】【分析】根据点坐标平移特征:左减右加,上加下减,即可得出平移之后的点坐标.【详解】∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,∴所得的点的坐标为:(5,1),故答案为(5,1).【点睛】本题考查了点的平移,熟知点的坐标的平移特征是解题的关键.10、【解析】

根据翻折变换的性质可得AN=AB,∠BAE=∠NAE,再根据两直线平行,内错角相等可得∠BAE=∠F,从而得到∠NAE=∠F,根据等角对等边可得AM=FM,设CM=x,表示出DM、AM,然后利用勾股定理列方程求出x的值,从而得到AM的值,最后根据NM=AM-AN计算即可得解.【详解】∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=6,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=3∴DM=6−x,AM=FM=3+x,在Rt△ADM中,由勾股定理得,,即解得x=,所以,AM=3+=,所以,NM=AM−AN=−6=本题考查翻折变换,解题关键在于熟练掌握勾股定理的性质.11、【解析】

先运用平方差公式把化为(a+b)(a-b),然后将a与b的值代入计算即可求出值.【详解】解:∵=(a+b)(a-b),∴=2×(-2)=.此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12、12【解析】

如图,连接AC、BD交于点O′,利用中点坐标公式,构建方程求出a、b即可;【详解】解:如图,连接AC、BD交于点O′.∵四边形ABCD是平行四边形,∴AO′=O′C,BO′=O′D,∵A(3,a),B(2,2),C(b,3),D(8,6),∴,∴a=5,b=7,∴a+b=12,故答案为:12此题考查坐标与图形的性质,解题关键在于构建方程求出a、b13、1【解析】

根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】解:∵∠BCA=90°,D是AB的中点,∴AB=2CD=12cm,∵E、F分别是AC、BC的中点,∴EF=AB=1cm,故答案为1.本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)1【解析】

(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=12BC,DG∥BC且DG=12BC,从而得到DG=EF,DG∥(2)想办法证明OM=MF=ME即可解决问题.【详解】(1)证明:∵D、G分别是AB、AC的中点,∴DG∥BC,DG=12BC∵E、F分别是OB、OC的中点,∴EF∥BC,EF=12BC∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵OB⊥OC,∴∠BOC=90°,∵∠EOM+∠COM=90°,∠EOM+∠OCB=90°,∴∠COM=∠OCB,∵EF∥BC,∴∠OFE=∠OCB,∴∠MOF=∠MFO,∴OM=MF,∵∠OEM+∠OFM=90°,∠EOM+∠MOF=90°,∴∠EOM=∠MEO,∴OM=EM,∴EF=2OM=1.由(1)有四边形DEFG是平行四边形,∴DG=EF=1.本题考查平行四边形的判定与性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG是平行四边形.15、(1)见解析;(2)添加AB=BC;【解析】

(1)根据已知条件证明四边形ADBE是平行四边形即可求解;(2)根据矩形的判定定理即可求解.【详解】证明:(1)∵DE∥BC,BD∥AC∴四边形DBCE是平行四边形∴DB=EC,∵E是AC中点∴AE=EC∵AE=EC=DB,AC∥DB∴四边形ADBE是平行四边形∴AF=BF,即F是AB中点.(2)添加AB=BC∵AB=BC,AE=EC∴BE⊥AC∴平行四边形DBEA是矩形.此题主要考查特殊平行四边形的判定与性质,解题的关键是熟知矩形的判定定理.16、(1)详见解析;(1)CD=1.【解析】

(1)根据相似三角形的判定得出即可;(1)根据相似得出比例式,代入求出即可.【详解】证明:(1)∵∠DBC=∠A,∠C=∠C,∴△BDC∽△ABC;(1)∵△BDC∽△ABC,∴,∴,∴CD=1.考核知识点:相似三角形的判定和性质.17、需要m的铁棍.【解析】

根据图中的几何关系,然后由菱形的四边相等可以求出答案.【详解】由题意,知两个大菱形的边长为:(m).小菱形的边长为:(m).所以三个菱形的周长的和为:(m).所以所需铁棍的总长为:1.8×9+2.4×2+2=m.答:需要m的铁棍.本题考查了菱形的性质及勾股定理在计算中的应用,明确菱形的性质及根据勾股定理构建方程是解题的关键.18、(1)八(1)班的优秀率:,八(2)班的优秀率:;(2)八(2)班的成绩相对整齐;(3)600人.【解析】

(1)用95分或以上的人数除以总人数即可分别求出八(1)班和八(2)班的优秀率;(2)先分别求出八(1)班和八(2)班的平均数,再计算它们的方差,然后根据方差的定义,方差越小成绩越整齐得出答案;(3)用该校学生总数乘以样本优秀率即可.【详解】解:(1)八(1)班的优秀率是:×100%=40%,八(2)班的优秀率是:×100%=80%;(2)八(1)班的平均成绩是:(100+100+90+90+90)=94,方差是:[2×(100−94)2+3×(90−94)2]=24;八(2)班的平均成绩是:(95+95+95+95+90)=94,方差是:[4×(95−94)2+(90−94)2]=4;∵4<24,即八(2)班的方差<八(1)班的方差,∴八(2)班的成绩相对整齐;(3)1000×=600(人).答:该校大约有600名学生达到优秀.本题考查方差的定义:一般地设n个数据x1,x2,…,xn的平均数为,则方差S2=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了利用样本估计总体.一、填空题(本大题共5个小题,每小题4分,共20分)19、内错角相等,两直线平行【解析】解:“两直线平行,内错角相等”的条件是:两条平行线被第三条值线索截,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,可简说成“内错角相等,两直线平行”.20、m>1【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.考点:一次函数图象与几何变换.21、(-4,3),或(-1,3),或(-9,3)【解析】∵A(-10,0),C(0,3),,.∵点D是OA的中点,.当时,,.当时,,,当时,,.当时,不合题意.故答案有三种情况.【点睛】本题考查了矩形的性质,等腰三角形的概念,平面直角坐标系中点的坐标及分类的思想.涉及等腰三角形的计算,不管是角的计算还是腰的计算,一般都要进行分类讨论.像本题就要分四种情况进行计算.22、2【解析】试题分析:利用相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方可得.解:两个相似多边形的一组对应边分别为3cm和4.5cm,则相似比是3:4.5=1:3,面积的比等于相似比的平方,即面积的比是4:9,因而可以设较小的多边形的面积是4x(cm1),则较大的是9x(cm1),根据面积的和是130(cm1),得到4x+9x=130,解得:x=10,则较小的多边形的面积是2cm1.故答案为2.23、1.【解析】

根据翻转变换的性质得到BF=DF,根据三角形的周长公式计算即可.【详解】由翻转变换的性质可知,BF=DF,则△DCF的周长=DF+CF+CD=BF+CF+CD=BC+CD=1cm,故答案为:1.本题考查的是翻转变换的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、解答题(本大题共3个小题,共30分)24、(1),图略;(2)10,12.5;(3)132.【解析】

(1)由C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论