北京东城二中学2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】_第1页
北京东城二中学2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】_第2页
北京东城二中学2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】_第3页
北京东城二中学2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】_第4页
北京东城二中学2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页北京东城二中学2024-2025学年九年级数学第一学期开学达标检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若,,则为A. B. C. D.2、(4分)若,两点都在直线上,则与的大小关系是()A. B. C. D.无法确定3、(4分)如果一组数据-3,x,0,1,x,6,9,5的平均数为5,则x为()A.22 B.11 C.8 D.54、(4分)在平面直角坐标系中,点P(-2,x2A.第一象限 B.第二象限 C.第三象限 D.第四象限5、(4分)函数中自变量x的取值范围是()A.x≠﹣1 B.x>﹣1 C.x≠1 D.x≠06、(4分)甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是28,18.6,1.1.导游小李最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选()A.甲团 B.乙团 C.丙团 D.三个团都一样7、(4分)如图,边长为a,b的矩形的周长为10,面积为6,则a2b+ab2的值为()A.60 B.16 C.30 D.118、(4分)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610千克,=608千克,亩产量的方差分别是="29."6,="2."7.则关于两种小麦推广种植的合理决策是()A.甲的平均亩产量较高,应推广甲B.甲、乙的平均亩产量相差不多,均可推广C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平行四边形ABCD中,AD2AB;CF平分BCD交AD于F,作CEAB,垂足E在边AB上,连接EF.则下列结论:①F是AD的中点;②S△EBC2S△CEF;③EFCF;④DFE3AEF.其中一定成立的是_____.(把所有正确结论的序号都填在横线上)10、(4分)如图,一次函数与的图的交点坐标为(2,3),则关于的不等式的解集为_____.11、(4分)一元二次方程x2﹣x=0的根是_____.12、(4分)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,DE的长=________________.13、(4分)若有意义,则的取值范围为_________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形。15、(8分)如图,为了美化环境,建设魅力呼和浩特,呼和浩特市准备在一个广场上种植甲、乙两种花卉经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示乙种花卉的种植费用为每平方米100元(1)直接写出当和时,与的函数关系式.(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?16、(8分)一次安全知识测验中,学生得分均为整数,满分10分,这次测验中,甲,乙两组学生人数都为5人,成绩如下(单位:分):甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数甲______________88乙______________9______________(2)已知甲组学生成绩的方差,计算乙组学生成绩的方差,并说明哪组学生的成绩更稳定.17、(10分)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=6cm,∠BAO=30°,点F为AB的中点.(1)求OF的长度;(2)求AC的长.18、(10分)为传承中华优秀传统文化,某校团委组织了一次全校名学生参加的“汉字书写”大赛,为了解本次大赛的成绩,校团委随机抽取了其中名学生的成绩(成绩取整数,总分分)作为样本进行统计,制成如下不完整的统计图表:根据所给信息,解答下列问题:(1)_____,______;(2)补全频数直方图;(3)这名学生成绩的中位数会落在______分数段;(4)若成绩在分以上(包括分)为“优”等,请你估计该校参加本次比赛的名学生中成绩为“优”等的有多少人。B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)要使分式2x-1有意义,则x20、(4分)如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为_____.21、(4分)一次函数y=k(x-1)的图象经过点M(-1,-2),则其图象与y轴的交点是__________.22、(4分)点A(a,﹣5)和(3,b)关于x轴对称,则ab=_____.23、(4分)如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确的有_____.(填序号)二、解答题(本大题共3个小题,共30分)24、(8分)体育课上,甲、乙两个小组进行定点投篮对抗赛,每组10人,每人投10次.下表是甲组成绩统计表:投进个数10个8个6个4个人数1个5人1人1人(1)请计算甲组平均每人投进个数;(1)经统计,两组平均每人投进个数相同且乙组成的方差为3.1.若从成绩稳定性角度看,哪一组表现更好?25、(10分)如图,在菱形ABCD中,∠BAD=120°,E为AB边上一点,过E作EG⊥BC于点G,交对角线BD于点F.(1)如图(1),若∠ACE=15°,BC=6,求EF的长;(2)如图(2),H为CE的中点,连接AF,FH,求证:AF=2FH.26、(12分)四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_____________;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负。你认为这个游戏是否公平?请说明理由。

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

由平行四边形的性质和折叠的性质,得出,由三角形的外角性质求出,再由三角形内角和定理求出,即可得到结果.【详解】,,由折叠可得,,又,,又,中,,,故选B.本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出的度数是解决问题的关键.2、C【解析】

根据一次函数的性质进行判断即可.【详解】解:∵直线的K=2>0,∴y随x的增大而增大,∵-4<-2,∴.故选C.本题考查了一次函数的增减性,当K>0时,y随x的增大而增大,当K<0时,y随x的增大而减小.3、B【解析】

根据算术平均数的计算方法列方程求解即可.【详解】由平均数的计算公式得:(-3+x+0+1+x+6+9+5)=5解得:x=11,故选:B.考查算术平均数的计算方法,利用方程求解,熟记计算公式是解决问题的前提,是比较基础的题目.4、B【解析】

∵-20,x2+10,∴点P(-2,x2+1)故选B.5、A【解析】

根据有分式的意义的条件,分母不等于0,可以求出x的范围.【详解】解:根据题意得:x+1≠0,解得:x≠﹣1.故选:A.本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6、C【解析】

根据方差的意义即可得.【详解】方差越小,表示游客年龄波动越小、越相近则他应该选择丙团故选:C.本题考查了方差的意义,掌握理解方差的意义是解题关键.7、C【解析】

先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【详解】∵矩形的周长为10,∴a+b=5,∵矩形的面积为6,∴ab=6,

∴a2b+ab2=ab(a+b)=1.

故选:C.本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.8、D【解析】分析:本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的方差即可得出乙的亩产量比较稳定,从而求出正确答案.解答:解:∵=610千克,=608千克,∴甲、乙的平均亩产量相差不多∵亩产量的方差分别是S2甲=29.6,S2乙=2.1.∴乙的亩产量比较稳定.故选D.二、填空题(本大题共5个小题,每小题4分,共20分)9、①③④.【解析】

由角平分线的定义和平行四边形的性质可证得CD=DF,进一步可证得F为AD的中点,由此可判断①;延长EF,交CD延长线于M,分别利用平行四边形的性质以及①的结论可得△AEF≌△DMF,结合直角三角形的性质可判断③;结合EF=FM,利用三角形的面积公式可判断②;在△DCF和△ECF中利用等腰三角形的性质、外角的性质及三角形内角和可得出∠DFE=3∠AEF,可判断④,综上可得答案.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DFC=∠BCF,∵CF平分∠BCD,∴∠BCF=∠DCF,∴∠DFC=∠DCF,∴CD=DF,∵AD=2AB,

∴AD=2CD,∴AF=FD=CD,即F为AD的中点,故①正确;延长EF,交CD延长线于M,如图,

∵四边形ABCD是平行四边形,

∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,又∵∠AFE=∠DFM,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠ECD=∠AEC=90°,∵FM=EF,∴FC=FM,故③正确;∵FM=EF,∴S△EFC∵MC>BE,∴S△BEC<2S设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故④正确;综上可知正确的结论为①③④.

故答案为①③④.本题以平行四边形为载体,综合考查了平行四边形的性质、全等三角形的判定和性质、直角三角形的斜边上的中线等于斜边一半的性质、三角形的内角和和等腰三角形的判定和性质,思维量大,综合性强.解题的关键是正确作出辅助线,综合运用所学知识去分析思考;本题中见中点,延长证全等的思路是添辅助线的常用方法,值得借鉴与学习.10、x<2.【解析】

根据不等式与函数的关系由图像直接得出即可.【详解】由图可得关于的不等式的解集为x<2.故填:x<2.此题主要考查函数与不等式的关系,解题的关键是熟知函数的性质.11、x1=0,x2=1【解析】

方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为x1=0,x2=1.此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.12、5【解析】

首先根据矩形的性质可得出AD∥BC,即∠1=∠3,然后根据折叠知∠1=∠2,C′D=CD、BC′=BC,可得到∠2=∠3,进而得出BE=DE,设DE=x,则EC′=8-x,利用勾股定理求出x的值,即可求出DE的长.【详解】∵四边形ABCD是矩形,

∴AD∥BC,即∠1=∠3,

由折叠知,∠1=∠2,C′D=CD=4、BC′=BC=8,

∴∠2=∠3,即DE=BE,

设DE=x,则EC′=8−x,

在Rt△DEC′中,DC′2+EC′2=DE2

∴42+(8−x)2=x2解得:x=5,

∴DE的长为5.本题考查折叠问题,解题的关键是掌握折叠的性质和矩形的性质.13、【解析】

根式有意义,被开方式要大于等于零.【详解】解:∵有意义,∴2x0,解得:故填.本题考查了根式有意义的条件,属于简单题,熟悉二次根式有意义的条件是解题关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)见解析【解析】

(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对应角相等,利用ASA可得出三角形ABE与三角形FCE全等;(2)由△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形,根据平行四边形的对角线互相平分得到AE=EF,BE=EC;再由∠AEC为三角形ABE的外角,利用外角的性质得到∠AEC等于∠ABE+∠EAB,再由∠AEC=2∠ABC,得到∠ABE=∠EAB,利用等角对等边可得出AE=BE,可得出AF=BC,利用对角线相等的平行四边形为矩形可得出ABFC为矩形.【详解】证明:(1)∵四边形ABCD为平行四边形,∴AB∥DC,∴∠ABE=∠ECF,又∵E为BC的中点,∴BE=CE,在△ABE和△FCE中,∵,∴△ABE≌△FCE(ASA);(2)∵△ABE≌△FCE,∴AB=CF,又∵四边形ABCD为平行四边形,∴AB∥CF,∴四边形ABFC为平行四边形,∴BE=EC,AE=EF,又∵∠AEC=2∠ABC,且∠AEC为△ABE的外角,∴∠AEC=∠ABC+∠EAB,∴∠ABC=∠EAB,∴AE=BE,∴AE+EF=BE+EC,即AF=BC,则四边形ABFC为矩形.此题考考查矩形的判定,平行四边形的性质,全等三角形的判定与性质,解题关键在于掌握各判定定理15、(1);(2)应该分配甲、乙两种花卉的种植面积分别是800m2

和400m2,才能使种植总费用最少,最少总费用为121000元.【解析】

(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.

(2)设种植总费用为W元,甲种花卉种植为am2,则乙种花卉种植(1200−a)m2,根据实际意义可以确定a的范围,结合种植费用y(元)与种植面积x(m2)之间的函数关系可以分类讨论最少费用为多少.【详解】解:(1)当0≤x≤300,设y=kx,将点(300,36000)代入得:36000=300k,∴k=120,当x>300,设y=mx+n,将点(300,36000)及点(500,54000)代入得,解得m=90,n=9000,∴y=90x+9000,∴,(2)设种植总费用为W元,甲种花卉种植为am2,则乙种花卉种植(1200−a)m2,由题意得:,

∴200≤a≤800当200≤a≤300时,W1=120a+100(1200−a)=20a+1.∵20>0,W1随a增大而增大,

∴当a=200

时.Wmin=124000

当300<a≤800时,W2=90a+9000+100(1200−a)=−10a+2.

∵-10<0,W2随a增大而减小,当a=800时,Wmin=121000

∵124000>121000

∴当a=800时,总费用最少,最少总费用为121000元.

此时乙种花卉种植面积为1200−800=400(m2).

答:应该分配甲、乙两种花卉的种植面积分别是800m2

和400m2,才能使种植总费用最少,最少总费用为121000元.本题是看图写函数解析式并利用解析式的题目,考查分段函数的表达式和分类讨论的数学思想,熟悉待定系数法求一次函数解析式及一次函数的性质是解题的关键.16、(1)甲:平均数8;乙:平均数8,中位数9;(2)甲组学生的成绩比较稳定.【解析】

(1)根据平均数和中位数的定义求解可得;(2)根据方差的定义计算出乙的方差,再比较即可得.【详解】(1)甲的平均数:,乙的平均数:,乙的中位数:9;(2).∵,∴甲组学生的成绩比较稳定.本题考查了求平均数,中位数与方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、(1);(2).【解析】分析:(1)由四边形ABCD是菱形,对角线AC与BD相交于O,由点F为AB的中点,得到OF=AB,即可得到结论;(2)在Rt△AOB中,由30°角所对直角边等于斜边的一半,得到OB的长,然后由勾股定理求得OA的长,继而求得AC的长.详解:(1)∵ABCD是菱形,∴AC⊥BD,在RtΔAOB中,OF为斜边AB边上的中线,∴OF=AB=3cm;(2)在Rt△AOB中,∠BAO=30°,∴OB=AB=3,由勾股定理得:OA==3,∴AC=OA=6.点睛:本题考查了菱形的性质、含30°角的直角三角形以及勾股定理.熟练掌握相关性质和定理是解题的关键.18、(1)70,0.05;(2)见解析;(3)80≤x<90;(4)625人.【解析】

(1)根据第一组的频数是30,频率是0.15,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第一组频数除以数据总数可得b的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数2500乘以“优”等学生的所占的频率即可.【详解】(1)本次调查的总人数为30÷0.15=200,则a=200×0.35=70,b=10÷200=0.05,故答案为:70,0.05;(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80⩽x<90,∴这200名学生成绩的中位数会落在80⩽x<90分数段,故答案为:80⩽x<90;(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:2500×0.25=625(人).此题考查频数(率)分布表,频数(率)分布直方图,中位数,解题关键在于看懂图中数据一、填空题(本大题共5个小题,每小题4分,共20分)19、x≠1【解析】根据题意得:x-1≠0,即x≠1.20、3【解析】

根据直角三角形斜边的中线等于斜边的一半求解即可.【详解】∵在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,∴,,∴DO=AO=3.故答案为3.本题考查了直角三角形的性质,熟练掌握直角三角形斜边的中线等于斜边的一半是解答本题的关键.21、(0,-1)【解析】

由图象经过点M,故将M(-1,-2)代入即可得出k的值.【详解】解:∵一次函数y=k(x-1)的图象经过点M(-1,-2),则有k(-1-1)=-2,解得k=1,所以函数解析式为y=x-1,令x=0代入得y=-1,故其图象与y轴的交点是(0,-1).故答案为(0,-1).本题考查待定系数法求函数解析式,难度不大,直接代入即可.22、1.【解析】

根据关于x轴对称的点的横坐标相同,纵坐标互为相反数可得a、b的值,继而可求得答案.【详解】∵点A(a,-5)和点B(3,b)关于x轴对称,∴a=3,b=5,∴ab=1,故答案为:1.本题考查了关于x轴对称的点的坐标特征,熟练掌握是解题的关键.23、①②③④【解析】分析:分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.详解:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.故答案为①②③④.点睛:本题考查内容较多,由BC=EC,得∠CEB=∠CBE,再由平行四边形的性质得∠CEB=∠EBF,可得BE平分∠CBF;再由等腰三角形的判定与性质可得CF平分∠DCB,BC=FB;由线段垂直平分线的判定可得PF=PC.二、解答题(本大题共3个小题,共30分)24、(1)甲组平均每人投进个数为7个;(1)乙组表现更好.【解析】

(1)加权平均数:若n个数x1,x1,x3,…,xn的权分别是w1,w1,w3,…,wn,则x1w1+x1w1+…+xnwnw1+w1+…+wn叫做这n个数的加权平均数,根据加权平均数的定义计算即可.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论