![湖南省凤凰县联考2025届九上数学开学预测试题【含答案】_第1页](http://file4.renrendoc.com/view14/M03/12/0F/wKhkGWcW-hOAFvvoAAGQaLi7tEg409.jpg)
![湖南省凤凰县联考2025届九上数学开学预测试题【含答案】_第2页](http://file4.renrendoc.com/view14/M03/12/0F/wKhkGWcW-hOAFvvoAAGQaLi7tEg4092.jpg)
![湖南省凤凰县联考2025届九上数学开学预测试题【含答案】_第3页](http://file4.renrendoc.com/view14/M03/12/0F/wKhkGWcW-hOAFvvoAAGQaLi7tEg4093.jpg)
![湖南省凤凰县联考2025届九上数学开学预测试题【含答案】_第4页](http://file4.renrendoc.com/view14/M03/12/0F/wKhkGWcW-hOAFvvoAAGQaLi7tEg4094.jpg)
![湖南省凤凰县联考2025届九上数学开学预测试题【含答案】_第5页](http://file4.renrendoc.com/view14/M03/12/0F/wKhkGWcW-hOAFvvoAAGQaLi7tEg4095.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页湖南省凤凰县联考2025届九上数学开学预测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度2、(4分)如图,直线的解析式为,直线的解析式为,则不等式的解集是()A. B. C. D.3、(4分)下列度数不可能是多边形内角和的是()A. B. C. D.4、(4分)若关于的不等式组的整数解共有个,则的取值范围是()A. B. C. D.5、(4分)“a是正数”用不等式表示为()A.a≤0B.a≥0C.a<0D.a>06、(4分)若bk>0,则直线y=kx-b一定通过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限7、(4分)已知关于x的不等式组的整数解共有4个,则a的最小值为()A.1 B.2 C.2.1 D.38、(4分)若二次根式有意义,则x的取值范围是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在中,,点,,分别是,,的中点,若,则线段的长是__________.10、(4分)在函数的图象上有两个点,,则的大小关系是___________.11、(4分)若关于有增根,则_____;12、(4分)若关于x的一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,则m的取值范围为_____.13、(4分)若一组数据1,3,,5,4,6的平均数是4,则这组数据的中位数是__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是1.求:(1)两条对角线的长度;(2)菱形的面积.15、(8分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.16、(8分)解不等式组,并将它的解集在数轴表示出来.17、(10分)如图,四边形中,,平分,交于.(1)求证:四边形是菱形;(2)若点是的中点,试判断的形状,并说明理由.18、(10分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AD平分∠CAB交BC于点D,CD=1,延长AC到E,使AE=AB,连接DE,BE.(1)求BD的长;(2)求证:DA=DE.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某班30名学生的身高情况如下表:身高(m)1.451.481.501.531.561.60人数256854则这30名学生的身高的众数是______.20、(4分)若分式方程有增根,则a的值是__________________.21、(4分)因式分解的结果是____.22、(4分)如图,在边长为2的正方形ABCD的外部作,且,连接DE、BF、BD,则________.23、(4分)如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是_____.二、解答题(本大题共3个小题,共30分)24、(8分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?25、(10分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表.
请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是________;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.26、(12分)如图,正方形的对角线、相交于点,,.(1)求证:四边形是正方形.(2)若,则点到边的距离为______.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.2、D【解析】
由图象可以知道,当x=m时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式解集.【详解】不等式对应的函数图象是直线在直线“下方”的那一部分,其对应的的取值范围,构成该不等式的解集.所以,解集应为,直线过这点,把代入易得,.故选:D.此题考查一次函数与一元一次不等式,解题关键在于结合函数图象进行解答.3、B【解析】
根据多边形内角和定理求解即可.【详解】正多边形内角和定理n边形的内角的和等于:(n-2)×180°(n大于等于3且n为整数)A.,正确;B.,错误;C.,正确;D.,正确;故答案为:B.本题考查了多边形内角和的问题,掌握多边形内角和定理是解题的关键.4、B【解析】
首先解不等式组,利用m表示出不等式组的解集,然后根据不等式组有4个整数解即可求得m的范围.【详解】解:,解①得x<m,
解②得x≥1.
则不等式组的解集是1≤x<m.
∵不等式组有4个整数解,
∴不等式组的整数解是1,4,5,2.
∴2<m≤3.故选:B.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5、D【解析】
正数即“>0”可得答案.【详解】“a是正数”用不等式表示为a>0,故选D.本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.6、D【解析】
根据题意讨论k和b的正负情况,然后可得出直线y=kx-b一定通过哪两个象限.【详解】解:由bk>0,知,①b>0,k>0;②b<0,k<0;①b>0,k>0时,直线经过第一、三、四象限,②b<0,k<0时,直线经过第一、二、四象限.综上可得,函数一定经过一、四象限.故选:D.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7、B【解析】
首先解不等式组求得不等式组的解集,然后根据不等式组的整数解的个数确定整数解,从而确定a的范围,进而求得最小值.【详解】解:解①得x>-2,解②得x≤a.则不等式组的解集是-2<x≤a.不等式有4个整数解,则整数解是-1,0,1,2.则a的范围是2≤a<3.a的最小值是2.故答案是:B本题考查一元一次不等式组的整数解,确定a的范围是本题的关键.8、C【解析】
根据二次根式有意义的条件“被开方数大于或等于0”进行求解即可.【详解】∵二次根式有意义,∴,∴,故选:C.本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】
先根据直角三角形斜边上的中线等于斜边的一半求出AB的长,再根据三角形中位线定理求出EF的长即可.【详解】中,,D是AB的中点,即CD是直角三角形斜边上的中线,,又分别是的中点,∴是的中位线,,故答案为:1.此题主要考查了直角三角形的性质以及三角形中位线定理,熟练掌握它们的性质是解答此题的关键.10、y1>y2【解析】分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质,由k的值判断函数的增减性,由此比较即可.详解:∵k=-5<0∴y随x增大而减小,∵-2<5∴>.故答案为:>.点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.11、1【解析】
方程两边都乘以最简公分母(x–1),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出a的值.【详解】解:方程两边都乘(x﹣1),得1-ax+3x=3x﹣3,∵原方程有增根∴最简公分母x﹣1=0,即增根为x=1,把x=1代入整式方程,得a=1.此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.方程的增根不适合原方程,但适合去分母后的整式方程,这是求字母系数的重要思想方法.12、﹣1<m<【解析】
根据一次函数y=kx+b(k≠0)的图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【详解】解:由一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,知m+1>0,且2m﹣3<0,解得,﹣1<m<.故答案为:﹣1<m<.本题考查一次函数图象与系数的关系,解题的关键是掌握一次函数图象与系数的关系.13、4.5【解析】
根据题意可以求得x的值,从而可以求的这组数据的中位数.【详解】解:∵数据1、3、x、5、4、6的平均数是4,∴解得:x=5,则这组数据按照从小到大的顺序排列为:1,3,4,5,5,6则中位数为故答案为:4.5本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.三、解答题(本大题共5个小题,共48分)14、(1)AC=8,BD=;(2).【解析】
(1)首先证明△ABC是等边三角形,解直角三角形OAB即可解决问题;(2)菱形的面积等于对角线乘积的一半;【详解】解:(1)菱形ABCD的周长为1,∴菱形的边长为1÷4=8∵∠ABC:∠BAD=1:2,∠ABC+∠BAD=180°∠ABC=60°,∠BCD=120°△ABC是等边三角形∴AC=AB=8∵菱形ABCD对角线AC、BD相交于点O∴AC⊥BD,∠ABO=∠ABC=30°∴OA=AB=4∴BO=.∴BD=(2)本题考查菱形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是证明△ABC是等边三角形,属于中考常考题型.15、解:(1)D错误(2)众数为1,中位数为1.(2)①小宇的分析是从第二步开始出现错误的.②1278(颗)【解析】分析:(1)条形统计图中D的人数错误,应为20×10%.(2)根据条形统计图及扇形统计图得出众数与中位数即可.(2)①小宇的分析是从第二步开始出现错误的;②求出正确的平均数,乘以260即可得到结果.解:(1)D错误,理由为:∵共随机抽查了20名学生每人的植树量,由扇形图知D占10%,∴D的人数为20×10%=2≠2.(2)众数为1,中位数为1.(2)①小宇的分析是从第二步开始出现错误的.②(棵).估计260名学生共植树1.2×260=1278(颗)16、x≤1,将解集表示在数轴上见解析.【解析】
先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上画出来【详解】解不等式①,得:x<2,解不等式②,得:x≤1,将解集表示在数轴上如下:此题考查在数轴上表示不等式的解集和解一元一次不等式组,解题关键在于先求出不等式的解集17、(1)详见解析;(2)是直角三角形,理由详见解析.【解析】
(1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB为直角即可.【详解】(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴平行四边形AECD是菱形;(2)直角三角形,理由如下:∵四边形AECD是菱形,∴AE=EC,∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.本题考查了平行四边形的判定,菱形的判定与性质,直角三角形的判定,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.18、(1)BD=1;(1)证明见解析.【解析】
(1)根据题意可知∠CAB=60°,想办法证明DA=DB=1CD即可;(1)由题意可知三角形ABE是等边三角形,然后在证明Rt△DCA≌Rt△DCE,即可求证.【详解】(1)∵在Rt△ABC中,∠ACB=90°,∠ABC=30°,AD平分∠CAB,∴∠CAB=60°=1×∠CAD,∴∠CAD=∠DAB=30°;,∴∠DAB=∠DBA=30°,∴BD=DA=1CD=1.(1)∵AE=AB,在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠EAB=60°,∴△ABE是等边三角形,∵BC⊥AE,∴AC=CE,∵∠ACD=∠DCE=90°,CD=CD,∴Rt△DCA≌Rt△DCE(SAS),∴DA=DE.本题主要考查了含30°角的直角三角形,解题的关键是掌握角平分线的性质以及等边三角形的性质,此题难度不大.一、填空题(本大题共5个小题,每小题4分,共20分)19、1.1.【解析】
根据众数的定义,即出现次数最多的【详解】在这一组数据中1.1出现了8次,次数最多,故众数是1.1.故答案为1.1.此题考查众数,难度不大20、1【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入整式方程算出a的值即可.【详解】方程两边同时乘以x﹣3得:1+x﹣3=a﹣x.∵方程有增根,∴x﹣3=0,解得:x=3,∴1+3﹣3=a﹣3,解得:a=1.故答案为:1.本题考查了分式方程的增根,先根据增根的定义得出x的值是解答此题的关键.21、【解析】
先提取公因式6x2即可.【详解】=.故答案为:.本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.22、1【解析】
连接BE,DF交于点O,由题意可证△AEB≌△AFD,可得∠AFD=∠AEB,可证∠EOF=90°,由勾股定理可求解.【详解】如图,连接BE、DF交于点O.∵四边形ABCD是正方形,∴,.∵是等腰直角三角形,∴,,∴.在和△中,∵,,,∴,∴.∵,∴,∴,,,,∴.故答案为1.本题考查了正方形的性质,勾股定理,全等三角形判定和性质,添加恰当的辅助线构造直角三角形是本题的关键.23、(2,-1).【解析】试题分析:如图,根据A(-2,1)和B(-2,-3)确定平面直角坐标系,然后根据点C在坐标系中的位置确定点C的坐标为(2,-1).考点:根据点的坐标确定平面直角坐标系.二、解答题(本大题共3个小题,共30分)24、(1)饮用水和蔬菜分别为1件和2件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元【解析】试题分析:(1)关系式为:饮用水件数+蔬菜件数=320;(2)关系式为:30×甲货车辆数+20×乙货车辆数≥1;10×甲货车辆数+20×乙货车辆数≥2;(3)分别计算出相应方案,比较即可.试题解析:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=1.∴x﹣80=2.答:饮用水和蔬菜分别为1件和2件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤3.∵m为正整数,∴m=2或3或3,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆;(3)3种方案的运费分别为:①2×300+6×360=2960(元);②3×300+5×360=3000(元);③3×300+3×360=3030(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.25、(1)0.2;(2)补全征文比赛成绩频数分布直方图见解析;(3)全市
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新颖年终总结开场白
- 学校后勤服务管理工作计划范文
- 小学班干部培训计划
- 信息技术教师校本研修计划范文
- 社交媒体平台在品牌推广中的应用案例
- 城市风格公寓购买合同范本
- 农民合作社协议书范本
- 储藏室租赁协议书范本
- 电银业务在医疗健康领域的创新应用及发展前景分析
- 电子设备创新案例分享与经验总结报告
- 工艺评审报告
- DBJ50∕T-098-2019 城市绿化养护质量标准
- 自动化腹膜透析(APD)的临床应用课件
- 中国滑雪运动安全规范
- DG-TJ 08-2343-2020 大型物流建筑消防设计标准
- 学前儿童发展心理学(第3版-张永红)教学课件1754
- 2022牛排消费趋势报告
- TPM╲t4Step Manul(三星TPM绝密资料)
- 细菌群体感应系统及其应用课件
- 《农产品质量安全检测》PPT课件
- 司法鉴定程序通则(试行)
评论
0/150
提交评论