北京丰台2024-2025学年数学九上开学复习检测模拟试题【含答案】_第1页
北京丰台2024-2025学年数学九上开学复习检测模拟试题【含答案】_第2页
北京丰台2024-2025学年数学九上开学复习检测模拟试题【含答案】_第3页
北京丰台2024-2025学年数学九上开学复习检测模拟试题【含答案】_第4页
北京丰台2024-2025学年数学九上开学复习检测模拟试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页北京丰台2024-2025学年数学九上开学复习检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列命题正确的个数是()(1)若x2+kx+25是一个完全平方式,则k的值等于10;(2)正六边形的每个内角都等于相邻外角的2倍;(3)一组对边平行,一组对角相等的四边形是平行四边形;(4)顺次连结四边形的四边中点所得的四边形是平行四边形A.1 B.2 C.3 D.42、(4分)若一次函数的图象上有两点,则下列大小关系正确的是()A. B. C. D.3、(4分)下列说法正确的是()A.某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是2℃B.一组数据2,2,3,4,5,5,5,这组数据的众数是2C.小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是121分D.一组数据2,2,3,4,这组数据的中位数是2.54、(4分)如图,在正方形ABCD中,BD=2,∠DCE是正方形ABCD的外角,P是∠DCE的角平分线CF上任意一点,则△PBD的面积等于()A.1 B.1.5 C.2 D.2.55、(4分)八年级(1)班要在甲、乙、丙、丁四名同学中挑选一名同学去参加数学竟赛,四名同学在5次数学测试中成绩的平均数及方差如下表所示甲乙丙丁平均数85939386方差333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.甲 B.乙 C.丙 D.丁6、(4分)如果代数式有意义,则x的取值范围是().A.x≠3 B.x<3 C.x>3 D.x≥37、(4分)为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了15户居民的日用电量,结果如下表:日用电量(单位:度)45678户数25431则关于这15户家庭的日用电量,下列说法错误的是()A.众数是5度 B.平均数6度C.极差(最大值-最小值)是4度 D.中位数是6度8、(4分)如图,直线y=x+b与直线y=kx+b交于点P(3,5),则关于x的不等式x+b>kx+6的解集是()A.x>3 B.x<3 C.x≥3 D.x≤3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)关于的一元二次方程有一个解是,则__________.10、(4分)在平行四边形ABCD中,若∠A+∠C=160°,则∠B=_____.11、(4分)如图,的对角线、交于点,则图中成中心对称的三角形共有______对.12、(4分)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.13、(4分)内角和等于外角和2倍的多边形是__________边形.三、解答题(本大题共5个小题,共48分)14、(12分)如图,平面直角坐标系中,直线AB:交y轴于点,交x轴于点B.

(1)求直线AB的表达式和点B的坐标;

(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①当

时,求点P的坐标;②在①的条件下,以PB为斜边在第一象限作等腰直角,求点C的坐标.15、(8分)有两个不透明的袋子分别装有红、白两种颜色的球(除颜色不同外其余均相同),甲袋中有2个红球和1个白球,乙袋中有1个红球和3个白球.(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是______.(2)如果在乙袋中随机摸出两个小球,那么摸到两球颜色相同的概率是______.(3)如果在甲、乙两个袋子中分别随机摸出一个小球,那么摸到两球颜色相同的概率是多少?(请用列表法或树状图法说明)16、(8分)小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?17、(10分)已知坐标平面内的三个点、、.(1)比较点到轴的距离与点到轴距离的大小;(2)平移至,当点和点重合时,求点的坐标;(3)平移至,需要至少向下平移超过单位,并且至少向左平移个单位,才能使位于第三象限.18、(10分)某商场计划购进A、B两种新型节能台灯,已知B型节能台灯每盏进价比A型的多40元,且用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同.(1)求每盏A型节能台灯的进价是多少元?(2)商场将购进A、B两型节能台灯100盏进行销售,A型节能台灯每盏的售价为90元,B型节能台灯每盏的售价为140元,且B型节能台灯的进货数量不超过A型节能台灯数量的2倍.应怎样进货才能使商场在销售完这批台灯时利最多?此时利润是多少元?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=_____.20、(4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为_____.21、(4分)如图,正方形的边长为8,点是上的一点,连接并延长交射线于点,将沿直线翻折,点落在点处,的延长线交于点,当时,则的长为__.22、(4分)若,,则代数式__________.23、(4分)如图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在梯形ABCD中,AD∥BC,点E在边BC上,DE∥AB,设.(1)用向量表示下列向量:;(2)求作:(保留作图痕迹,写出结果,不要求写作法)25、(10分)先化简,再求值:()÷,其中x=.26、(12分)如图,在四边形ABCD中,AB=AD=3,DC=4,∠A=60°,∠D=150°,试求BC的长度.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

根据完全平方式、正六边形、平行四边形的判定判断即可【详解】(1)若x2+kx+25是一个完全平方式,则k的值等于±10,是假命题;(2)正六边形的每个内角都等于相邻外角的2倍,是真命题;(3)一组对边平行,一组对角相等的四边形是平行四边形,是真命题;(4)顺次连结四边形的四边中点所得的四边形是平行四边形,是真命题;故选C此题考查完全平方式、正六边形、平行四边形的判定,掌握其性质是解题关键2、B【解析】

首先观察一次函数的x项的系数,当x项的系数大于0,则一次函数随着x的增大而增大,当x小于0,则一次函数随着x的减小而增大.因此只需要比较A、B点的横坐标即可.【详解】解:根据一次函数的解析式可得此一次函数随着x的增大而减小因为根据-2<1,可得故选B.本题主要考查一次函数的一次项系数的含义,这是必考点,必须熟练掌握.3、D【解析】

直接利用中位数的定义,众数的定义和平均数的求法、极差的定义分别分析得出答案【详解】A、某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是6℃,故错误B、一组数据2,2,3,4,5,5,5,这组数据的众数是5,故错误;C、小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是120.6分,故此选项错误D、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项正确;故选D此题考查中位数的定义,众数的定义和平均数的求法、极差的定义,掌握运算法则是解题关键4、A【解析】由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.解:△PBD的面积等于

×2×1=1.故选A.“点睛”考查了三角形面积公式以及代入数值求解的能力,注意平行线间三角形同底等高的情况.5、B【解析】

根据平均数和方差的意义解答.【详解】解:从平均数看,成绩最好的是乙、丙同学,

从方差看,乙方差小,发挥最稳定,

所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选乙,

故选:B.本题考查平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6、C【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须。故选C。7、B【解析】

根据众数的定义,在一组数据中出现次数最多就是众数,以及根据加权平均数的求法,可以得出平均数,极差是最大值与最小值的差,中位数是按大小排列后最中间一个或两个的平均数,求出即可.【详解】解:∵由图表得:15户家庭日用电量分别为:4,4,5,5,5,5,5,6,6,6,6,7,7,7,8

∴此组数据的众数是:5度,故本选项A正确;

此组数据的平均数是:(4×2+5×5+6×4+7×3+8)÷15≈5.73度,故本选项B错误;

极差是:8-4=4度,故本选项C正确;

中位数是:6度,故本选项D正确.

故选:B.本题主要考查了众数,中位数,极差以及加权平均数的求法,正确的区分它们的定义是解决问题的关键.8、A【解析】

利用函数图象,写出直线y=x+b在直线y=kx+1上方所对应的自变量的范围即可.【详解】根据图象得当x>3时,x+b>kx+1.故选:A.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题(本大题共5个小题,每小题4分,共20分)9、-3【解析】∵方程的一个解为,∴将代入原方程,得:,则,∵是关于的一元二次方程.∴,即,∴.10、100°【解析】

由平行四边形的性质得出对角相等,邻角互补,∠A=∠C,∠A+∠B=180°,由∠A+∠C=160°,得出∠A=∠C=80°,即可求出∠B.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B=180°﹣∠A=100°;故答案为:100°.本题考查了平行四边形的性质;熟练掌握平行四边形的对角相等,邻角互补的性质是解决问题的关键.11、4【解析】

▱ABCD是中心对称图形,根据中心对称图形的性质,对称点的连线到对称中心的距离相等,即对称中心是对称点连线的中点,并且中心对称图形被经过对称中心的直线平分成两个全等的图形,据此即可判断.【详解】解:图中成中心对称的三角形有△AOD和△COB,△ABO与△CDO,△ACD与△CAB,△ABD和△CDB共4对.本题主要考查了平行四边形是中心对称图形,以及中心对称图形的性质.掌握中心对称图形的特点是解题的关键.12、1或1.【解析】

试题分析:分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,①当30度角是等腰三角形的顶角时,如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=1,∴△ABC的腰长为边的正方形的面积为1.②当30度角是底角时,如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=11°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=1,∴△ABC的腰长为边的正方形的面积为1.考点:正方形的性质;等腰三角形的性质.13、六【解析】

设多边形有n条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n条边,由题意得:

180(n-2)=360×2,

解得:n=6,

故答案为:六.本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).三、解答题(本大题共5个小题,共48分)14、(1)(1,0);(2)①(2,3);②(3,1)【解析】

(1)把点A的坐标代入直线解析式可求得b=1,则直线的解析式为y=-x+1,令y=0可求得x=1,故此可求得点B的坐标;

(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得点D的坐标,设点P的坐标为(2,n),然后依据S△APB=S△APD+S△BPD可得到△APB的面积与n的函数关系式为S△APB=2n-1;由S△ABP=8得到关于n的方程可求得n的值,从而得到点P的坐标;

②如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.【详解】解:(1)∵把A(0,1)代入y=-x+b得b=1,∴直线AB的函数表达式为:y=-x+1.令y=0得:-x+1=0,解得:x=1,∴点B的坐标为(1,0);(2)①∵l垂直平分OB,

∴OE=BE=2.

∵将x=2代入y=-x+1得:y=-2+1=2.

∴点D的坐标为(2,2).

∵点P的坐标为(2,n),

∴PD=n-2.

∵S△APB=S△APD+S△BPD,

∴S△ABP=PD•OE+PD•BE=(n-2)×2+(n-2)×2=2n-1.∵S△ABP=8,∴2n-1=8,解得:n=3.∴点P的坐标为(2,3).②如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=PB,∠PCM+∠MCB=90°,∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC=∠NCB.∵PC=BC,,

∴△PCM≌△CBN.

∴CM=BN,PM=CN.

∴,解得.

∴点C的坐标为(3,1).

如图2所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.

设点C(p,q).

∵△PBC为等腰直角三角形,PB为斜边,

∴PC=CB,∠PCM+∠MCB=90°.

∵CM⊥l,BN⊥CM,

∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.

∴∠MPC=∠NCB.

在△PCM和△CBN中,

∴△PCM≌△CBN.

∴CM=BN,PM=CN.

∴,解得.

∴点C的坐标为(0,2)舍去.

综上所述点C的坐标为(3,1).此题考查一次函数的综合应用,全等三角形的性质和判断,解题关键在于掌握待定系数法求一次函数的解析式、割补法求面积、三角形的面积公式,全等三角形的性质和判断,由CM=BN,PM=CN列出关于p、q的方程组.15、(1);(2);(3)摸到的两球颜色相同的概率【解析】

(1)直接利用概率公式计算;(2)利用完全列举法展示6种等可能的结果数,然后根据概率公式求解;(3)画树状图展示所有12种等可能的结果数,找出摸到两球颜色相同的结果数,然后根据概率公式求解.【详解】(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是.(2)如果在乙袋中随机摸出两个小球,则有红白、红白、红白、白白、白白、白白共6种等可能的结果数,其中摸到两球颜色相同的概率=.(3)画树状图为:共有12种等可能的结果数,其中摸到两球颜色相同的结果数为5,所以摸到两球颜色相同的概率.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.16、(1)16,C(0.5,0);(2);(3)4千米.【解析】

(1)根据时间从1到2小帅走的路程为(24-8)千米,根据速度=路程÷时间即可求得小帅的速度,继而根据小帅的速度求出走8千米的时间即可求得点C的坐标;(2)根据图象利用待定系数法即可求得线段AB对应的函数表达式;(3)将x=2代入(2)中的解析式求出相应的y值,再用24减去此时的y值即可求得答案.【详解】(1)由图可知小帅的骑车速度为:(24-8)÷(2-1)=16千米/小时,点C的横坐标为:1-8÷16=0.5,∴点C的坐标为(0.5,0),故答案为千米/小时;(0.5,0);(2)设线段对应的函数表达式为,∵,,∴,解得:,∴线段对应的函数表达式为;(3)当时,,∴24-20=4,答:当小帅到达乙地时,小泽距乙地还有4千米.本题考查了一次函数的应用,弄清题意,找出求解问题所需要的条件,利用数形结合思想是解题的关键.17、(1)点到轴的距离等于点到轴距离;(2);(1)1,1【解析】

(1)根据横坐标为点到y轴的距离;纵坐标为点到x轴的距离即可比较大小;(2)由点A1和点B重合时,需将△ABC向右移2个单位,向下移2个单位,据此求解可得;(1)根据点A的纵坐标得出向下平移的距离,由点B的横坐标得出向左平移的距离.【详解】解:(1)∵,∴点到轴的距离为1∵,点到轴距离为1∴点到轴的距离等于点到轴距离(2)点和点重合时,需将向右移2个单位,向下移2个单位,∴点的对应点的坐标是(1)平移△ABO至△A2B2O2,需要至少向下平移超过1单位,并且至少向左平移1个单位,才能△A2B2O2使位于第三象限.故答案为:1,1.本题主要考查点的意义与图形的变换-平移,注意:点到x轴的距离等于该点纵坐标的绝对值;点到y轴的距离等于该点横坐标的绝对值;平面直角坐标系中点的坐标的平移规律.18、(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.【解析】

(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,根据用3000元购进的A型节能台灯与用5000元购进的B型节能台灯的数量相同,列方程求解;

(2)设购进B型台灯m盏,根据商场购进100盏台灯且规定B型台灯的进货数量不超过A型台灯数量的2倍,列不等式求解,进一步得到商场在销售完这批台灯时获利最多时的利润.【详解】解:(1)设每盏A型节能台灯的进价是x元,则B型节能台灯每盏进价为(x+40)元,根据题意得,,解得:x=60,经检验:x=60是原方程的解,故x+40=100,答:每盏A型节能台灯的进价是60元,则B型节能台灯每盏进价为100元;(2)设购进B型节能台灯m盏,购进A型节能台灯(100﹣m)盏,依题意有m≤2(100﹣m),解得m≤66,90﹣60=30(元),140﹣100=40(元),∵m为整数,30<40,∴m=66,即A型台灯购进34盏,B型台灯购进66盏时获利最多,34×30+40×66=1020+2640=3660(元).此时利润为3660元.答:(1)每盏A型节能台灯的进价是60元;(2)A型台灯购进34盏,B型台灯购进66盏时获利最多,利润为3660元.本题考查分式方程的应用和一元一次不等式的应用,解题的关键是读懂题意,找出合适的等量关系和不等关系,列方程和不等式求解.一、填空题(本大题共5个小题,每小题4分,共20分)19、22.5°【解析】

根据正方形的对角线平分一组对角求出∠CBE=45°,再根据等腰三角形两底角相等求出∠BCE=67.5°,然后根据∠DCE=∠BCD-∠BCE计算即可得解.【详解】∵四边形ABCD是正方形,∴∠CBE=45°,∠BCD=90°,∵BE=BC,∴∠BCE=(180°-∠BCE)=×(180°-45°)=67.5°,∴∠DCE=∠BCD-∠BCE=90°-67.5°=22.5°.故答案为22.5°.本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,需熟记.20、()n-1【解析】试题分析:已知第一个矩形的面积为1;第二个矩形的面积为原来的()2-1=;第三个矩形的面积是()3-1=;…故第n个矩形的面积为:.考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论