包头市和平中学2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】_第1页
包头市和平中学2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】_第2页
包头市和平中学2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】_第3页
包头市和平中学2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】_第4页
包头市和平中学2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页包头市和平中学2024-2025学年九年级数学第一学期开学质量检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,腰长为的等腰直角三角形绕直角顶点顺时针旋转得到,则图中阴影部分的面积等于()A. B. C. D.2、(4分)某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.1080x=C.1080x+15=3、(4分)已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是()A.3,4 B.4,3 C.3,3 D.4,44、(4分)四边形的内角和为()A.180° B.360° C.540° D.720°5、(4分)如图所示,在菱形ABCD中,已知两条对角线AC=24,BD=10,则此菱形的边长是()A.11 B.13 C.15 D.176、(4分)关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥37、(4分)在四边形中,,再补充一个条件使得四边形为菱形,这个条件可以是()A. B.C. D.与互相平分8、(4分)一元二次方程x2=x的根是()A.=0,=1 B.=0,=-1 C.==0 D.==1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是____.10、(4分)如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件__________使四边形AECF是平行四边形(只填一个即可).11、(4分)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________.12、(4分)化简:=______________13、(4分)的计算结果是___________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,中,已知,,于D,,,如何求AD的长呢?心怡同学灵活运用对称知识,将图形进行翻折变换,巧妙地解答了此题,请按照她的思路,探究并解答下列问题:(1)分别以AB、AC为对称轴,画出、的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,试证明四边形AEGF是正方形;(2)设,利用勾股定理,建立关于x的方程模型,求出x的值.15、(8分)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成,根据两队每天的工程费用和每天完成的工程量可知,若由两队合做6天可以完成,共需工程费用385200元;若单独完成,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元。(1)求甲、乙独做各需多少天?(2)若从节省资金的角度,应该选择哪个工程队?16、(8分)在△BCF中,点D是边CF上的一点,过点D作AD∥BC,过点B作BA∥CD交AD于点A,点G是BC的中点,点E是线段AD上一点,且∠CDG=∠ABE=∠EBF.(1)若∠F=60°,∠C=45°,BC=2,请求出AB的长;(2)求证:CD=BF+DF.17、(10分)某公司计划购买A、B两种计算器共100个,要求A种计算器数量不低于B种的14,且不高于B种的13.已知A、B两种计算器的单价分别是150元/个、100元/个,设购买A种计算器(1)求计划购买这两种计算器所需费用y(元)与x的函数关系式;(2)问该公司按计划购买者两种计算器有多少种方案?(3)由于市场行情波动,实际购买时,A种计算器单价下调了3m(m>0)元/个,同时B种计算器单价上调了2m元/个,此时购买这两种计算器所需最少费用为12150元,求m的值.18、(10分)本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行了第二次测试,测得成绩的最低分为3分.且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐次数,并给制成如图所示的频数分布直方图,请根据图中信息,计算仰卧起坐次数在次的频率是______20、(4分)某汽车生产厂对其生产的A型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)1123y(升)111928476由表格中y与t的关系可知,当汽车行驶________小时,油箱的余油量为1.21、(4分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是_____22、(4分)命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是___________________.它是________命题(填“真”或“假”).23、(4分)“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子_____袋.二、解答题(本大题共3个小题,共30分)24、(8分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=_______________;(2)因式分解:(a+b)(a+b-4)+4;(3)求证:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.25、(10分)(2017四川省乐山市)如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.26、(12分)(1)解不等式组:.(2)解方程:.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

根据旋转的性质求出的值,根据勾股定理和阴影部分面积等于△ADB的面积减△BEF的面积,即可求得阴影部分的面积.【详解】旋转,,,,,,设,则,,,,..故选D.本题考查了阴影部分的面积问题,掌握旋转的性质和三角形的面积公式是解题的关键.2、C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:1080x+153、C【解析】

根据众数,中位数,平均数的定义即可解答.【详解】解:已知一组数据2,3,4,x,1,4,3有唯一的众数4,只有当x=4时满足条件,故平均数==3,中位数=3,故答案选C.本题考查众数,中位数,平均数的概念,熟悉掌握是解题关键.4、B【解析】

解:四边形的内角和=(4-2)•180°=360°故选B.5、B【解析】

由菱形的性质可得AO=12AC=12,BO=12【详解】如图,∵四边形ABCD是菱形∴AC⊥BD,AO=12AC=12,BO=1∴AB=AO故选B.本题考查了菱形的性质,利用勾股定理求AB长是本题的关键.6、D【解析】

解不等式组得:,∵不等式组的解集为x<3∴m的范围为m≥3,故选D.7、D【解析】

由在四边形ABCD中,对角线AC,BD互相平分,可得四边形ABCD是平行四边形,又由对角线互相垂直的平行四边形是菱形,即可求得答案.【详解】解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形,故选:D.此题考查了平行四边形的判定以及菱形的判定.此题比较简单,注意掌握对角线互相垂直的平行四边形是菱形定理的应用.8、A【解析】

移项后用因式分解法求解.【详解】x2=xx2-x=0,x(x-1)=0,x1=0或x2=1.故选:A.考查了因式分解法解一元二次方程,解一元二次方程常用的方法有:直接开平方法、配方法、公式法、因式分解法,要根据方程的特点灵活选用合适的方法.二、填空题(本大题共5个小题,每小题4分,共20分)9、R≥3.1【解析】

解:设电流I与电阻R的函数关系式为I=,∵图象经过的点(9,4),∴k=31,∴I=,k=31>0,在每一个象限内,I随R的增大而减小,∴当I取得最大值10时,R取得最小值=3.1,∴R≥3.1,故答案为R≥3.1.10、AF=CE(答案不唯一).【解析】

根据平行四边形性质得出AD∥BC,得出AF∥CE,当AF=CE时,四边形AECF是平行四边形;根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE或FD=EB.根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC.添加∠AEC=∠FCA或∠DAE=∠DFC等得到AE∥FC,也可使四边形AECF是平行四边形.11、2【解析】

根据中位数和众数的定义分析可得答案.【详解】解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.

所以这5个数据分别是x,y,2,1,1,且x<y<2,

当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,

所以这组数据可能的最大的和是0+1+2+1+1=2.

故答案为:2.主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.12、【解析】分析:把分式进行化简就是对分式进行约分,首先要对分子、分母进行分解因式,然后约分.详解:原式==.故答案为:.点睛:分式进行约分时,应先把分子、分母中的多项式进行分解因式,正确分解因式是掌握约分的关键.13、3.5【解析】

原式=4-=3=3.5,故答案为3.5.三、解答题(本大题共5个小题,共48分)14、(1)见详解;(2)18【解析】

(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;

(2)利用勾股定理,建立关于x的方程模型(x-1)2+(x-9)2=152,求出AD=x=1.【详解】解:(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF

∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°

∴∠EAF=90°

又∵AD⊥BC

∴∠E=∠ADB=90°,∠F=∠ADC=90°

又∵AE=AD,AF=AD

∴AE=AF

∴四边形AEGF是正方形(2)解:设AD=x,则AE=EG=GF=x

∵BD=1,DC=9

∴BE=1,CF=9

∴BG=x-1,CG=x-9

在Rt△BGC中,BG2+CG2=BC2

∴(x-1)2+(x-9)2=152

∴(x-1)2+(x-9)2=152,化简得,x2-15x-54=0,整理得(x-18)(x+3)=0

解得x1=18,x2=-3(舍去)

所以AD=x=18本题考查图形的翻折变换和利用勾股定理,建立关于x的方程模型的解题思想.要能灵活运用.15、(1)1015(2)选甲比较节约资金.【解析】

(1)设甲独做要x天,乙独做要y天,根据题意列方程即可.(2)设甲独做要1天要m元,乙独做要1天要n元,再计算每个工程队的费用进行比较即可.【详解】(1)设甲独做要x天,乙独做要y天解得:故甲独做要10天,乙独做要15天(2)设甲独做要1天要m元,乙独做要1天要n元解得甲独做要的费用为:乙独做要的费用为:所以选甲本题主要考查二元一次方程组的应用,是常考点,应当熟练掌握.16、(1)3+(2)见解析【解析】

(1)过点E作EH⊥AB交AB于点H.分别求出AH,BH即可解决问题;(2)连接EF,延长FE交AB与点M.想办法证明△BMF是等腰三角形即可解决问题;【详解】解:(1)过点E作EH⊥AB交AB于点H.∵AD∥BC,AB∥CD,∴四边形ABCD为平行四边形.∴AB=DC,∠DAB=∠DBC,在△CGD和△AEB中,,∴△CGD≌△AEB,∴∠DGC=∠BEA,∴∠DGB=∠BED,∵AD∥BC,∴∠EDG+∠DGB=180°,∴∠EDG+∠BED=180°∴EB∥DG,∴四边形BGDE为平行四边形,∴BG=ED,∵G是BD的中点,∴BG=BC,∴BC=AD,ED=BG=AD,∵BC=2,∴AE=AD=,在Rt△AEH中,∵∠EAB=45°,sin∠EAB=sin45°=,∴EH=,∵∠EHA=90°,∴△AHE为等腰直角三角形,∴AH=EH=,∵∠F=60°,∴∠FBA=60°,∵∠EBA=∠EBF,∴∠EBA=30°,在Rt△EHB中,tan∠EBH=tan30°=,∴HB=3,∴AB=3+.(2)连接EF,延长FE交AB与点M.∵∠A=∠EDF,AE=DE,∠AEM=∠DEF,∴△AEM≌△DEF(ASA),∴DF=AM,ME=EF,又∵∠EBA=∠EBF,∴△MBF是等腰三角形∴BF=BM,又∵AB=AM+BM,∴CD=BF+DF.本题考查全等三角形的判定和性质,等腰三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形或全等三角形解决问题,属于中考常考题型.17、(1)y=50x+10000;(2)购买两种计算器有6种方案;(2)m=11.5时,购买这两种计算器所需最少费用为12150元.【解析】

(1)根据单价乘以数量等于总价,表示出购买A、B两种计算器的总价,然后将其相加就是总共所需要的费用;(2)根据题目条件A种计算器数量不低于B种的14,且不高于B种的13,可以构建不等式组,接出不等式组就可以求出(3)根据题目条件,构建购买这两种计算器所需最少费用为12150元的方程,求出m即可.【详解】(1)由题得:y=150x+100(100﹣x)=50x+10000;(2)由A种计算器数量不低于B种的14,且不高于B种的1x≥14100-x则两种计算器得购买方案有:方案一:A种计算器20个,B种计算器80个,方案二:A种计算器21个,B种计算器79个,方案三:A种计算器22个,B种计算器78个,方案四:A种计算器23个,B种计算器77个,方案五:A种计算器24个,B种计算器76个,方案六:A种计算器25个,B种计算器75个,综上:购买两种计算器有6种方案;(3)(150﹣3m)x+(100+2m)(100﹣x)=12150,150x﹣3mx+10000﹣100x+200m﹣2mx=12150,(50﹣5m)x=2150﹣200m,当x=20时,花费最少,则20(50﹣5m)=2150﹣200m,解得m=11.5,则m=11.5时,购买这两种计算器所需最少费用为12150元.本题考查了一次函数的应用,解题的关键是根据题目的条件列出函数解析式并准确找到自变量的取值范围.18、(1)25人(2)37分(3)第二次测试中得4分的学生有15人、得5分的学生有30人.【解析】

(1)根据频数、频率和总量的关系:频数=总量频率计算即可.(2)平均数是指在一组数据中所有数据之和再除以数据的个数,据此计算即可.(3)设第二次测试中得4分的学生有x人、得5分的学生有y人,根据“得4分和5分的人数共有45人”和“平均分比第一次提高了0.8分”列方程组求解即可.【详解】解:(1)本次测试的学生中,得4分的学生有人.(2)本次测试的平均分平均分(分).(3)设第二次测试中得4分的学生有x人、得5分的学生有y人,根据题意,得:,解得:.答:第二次测试中得4分的学生有15人、得5分的学生有30人.一、填空题(本大题共5个小题,每小题4分,共20分)19、0.4【解析】

根据计算仰卧起坐次数在次的频率.【详解】由图可知:仰卧起坐次数在次的频率.故答案为:.此题考查了频率、频数的关系:.20、12.2【解析】

由表格可知,开始油箱中的油为111L,每行驶1小时,油量减少8L,据此可得y与t的关系式.【详解】解:由题意可得:y=111-8t,

当y=1时,1=111-8t

解得:t=12.2.

故答案为:12.2.本题考查函数关系式.注意贮满111L汽油的汽车,最多行驶的时间就是油箱中剩余油量为1时的t的值.21、m>【解析】

根据图象的增减性来确定(2m-1)的取值范围,从而求解.【详解】∵一次函数y=(2m-1)x+1,y随x的增大而增大,∴2m-1>1,解得,m>,故答案是:m>.本题考查了一次函数的图象与系数的关系.一次函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1.22、如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形真【解析】分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.详解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.它是真命题.故答案为如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真.点睛:本题考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.23、6【解析】

根据一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超据:2袋原价付款数+超过2袋的总钱数≤50,列出不等式求解即可得.【详解】解:设可以购买x(x为整数)袋蜜枣粽子.,解得:,则她最多能买蜜枣粽子是6袋.故答案为:6.此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论