版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页安徽省亳州地区2025届九年级数学第一学期开学监测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下面关于平行四边形的说法中错误的是()A.平行四边形的两条对角线相等B.平行四边形的两条对角线互相平分C.平行四边形的对角相等D.平行四边形的对边相等2、(4分)菱形ABCD的对角线AC,BD相交于点O,若AC=6,菱形的周长为20,则对角线BD的长为()A.4 B.8 C.10 D.123、(4分)不等式的解在数轴上表示正确的是()A. B.C. D.4、(4分)下列二次根式中,最简二次根式的是()A. B. C. D.5、(4分)9的算术平方根是()A.﹣3 B.±3 C.3 D.6、(4分)班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为()A.x(x-1)=90B.x(x-1)=2×90C.x(x-1)=90÷2D.x(x+1)=907、(4分)如图,△ABC的周长为28,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=12,则PQ的长为()A.1 B.2 C.3 D.48、(4分)已知反比例函数(k为常数,且k≠0)的图象经过点(3,4),则该函数图象必不经过点()A.(2,6) B.(-1,-12) C.(,24) D.(-3,8)二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn=_____.10、(4分)在平行四边形中,,若,,则的长是__________.11、(4分)如图所示,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.12、(4分)如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.13、(4分)函数中,自变量的取值范围是__________.三、解答题(本大题共5个小题,共48分)14、(12分)(1)用配方法解方程:;(2)用公式法解方程:.15、(8分)布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是.(1)试写出y与x的函数关系式;(2)当x=6时,求随机地取出一只黄球的概率P.16、(8分)为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲70乙1甲、乙射击成绩折线统计图(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?17、(10分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=4,∠ABC=60°,求矩形AEFD的面积.18、(10分)某市在今年对全市6000名八年级学生进行了一次视力抽样调查,并根据统计数据,制作了的统计表和如图所示统计图.组别视力频数(人)A20BaCbD70E10请根据图表信息回答下列问题:(1)求抽样调查的人数;(2)______,______,______;(3)补全频数分布直方图;(4)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是多少?根据上述信息估计该市今年八年级的学生视力正常的学生大约有多少人?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠的依据是______________________________________.20、(4分)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有句五步,股十二步.问句中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为_____.21、(4分)将5个边长为1的正方形按照如图所示方式摆放,O1,O2,O3,O4,O5是正方形对角线的交点,那么阴影部分面积之和等于________.22、(4分)如图,在正方形外取一点,连接、、.过点作的垂线交于点,连接.若,,下列结论:①;②;③点到直线的距离为;④,其中正确的结论有_____________(填序号)23、(4分)用换元法解方程3x22x+1-2x+1x2=1时,如果设x22x+1=二、解答题(本大题共3个小题,共30分)24、(8分)如图1,点O为正方形ABCD的中心,E为AB边上一点,F为BC边上一点,△EBF的周长等于BC的长.(1)求∠EOF的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=OF,求的值.25、(10分)计算:+(﹣1)2﹣26、(12分)解方程(本题满分8分)(1)(x-5)2=2(5-x)(2)2x2-4x-6=0(用配方法);
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】∵平行四边形的对边相等、对角相等、对角线互相平分,∴B、C、D说法正确;只有矩形的对角线才相等,故A说法错误,故选A.2、B【解析】
利用菱形的性质根据勾股定理求得BO的长,然后求得BD的长即可.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∵AC=6,∴AO=3,∵周长为20,∴AB=5,由勾股定理得:BO=4,∴BD=8,故选:B.本题主要考查了菱形的性质,解题的关键是菱形问题转化为直角三角形问题求解.3、C【解析】
先求出不等式的解集,再在数轴上表示出来即可.【详解】解:解不等式1+x>3得,x>2,
在数轴上表示为:故选:C本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.4、D【解析】分析:根据最简二次根式的概念逐项分析即可.详解:A.=2,故不是最简二次根式;B.=,故不是最简二次根式;C.当a≥0时,,故不是最简二次根式;D.的被开方式既不含分母,又不含能开的尽的因式,故是最简二次根式;故选D.点睛:本题考查了二次根式的识别,如果二次根式的被开放式中都不含分母,并且也都不含有能开的尽方的因式,像这样的二次根式叫做最简二次根式.5、C【解析】试题分析:9的算术平方根是1.故选C.考点:算术平方根.6、A【解析】
如果设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,则一共送了x(x﹣1)张,再根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.【详解】设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.故选A.本题考查了一元二次方程的应用.解题的关键是读清题意,找准数量关系,列出方程.7、B【解析】
根据已知条件证明△AQB≌△EQB及△APC≌△DPC,再得出PQ是△ADE的中位线,根据题中数据,根据DE=BE+CD-BC求出DE的长度,最后由中位线的性质即可求出PQ的长度.【详解】解:∵BQ平分∠ABC,∴∠ABQ=∠EBQ,∵BQ⊥AE,∴∠AQB=∠EQB=90°,在△AQB与△EQB中∴△AQB≌△EQB(ASA)∴AQ=EQ,AB=BE同理可得:△APC≌△DPC(ASA)∴AP=DP,AC=DC,∴P,Q分别为AD,AE的中点,∴PQ是△ADE的中位线,∴PQ=,∵△ABC的周长为28,BC=12,∴AB+AC=28-12=16,即BE+CD=16,∴DE=BE+CD-BC=16-12=4∴PQ=2故答案为:B.本题主要考查了中位线的性质,涉及全等三角形的判定及三角形周长计算的问题,解题的关键是根据全等三角形的性质得出中位线.8、D【解析】
反比例函数(k为常数,且k≠0)的图象经过点(3,4),求出k值,然后依次判断各选项即可【详解】反比例函数(k为常数,且k≠0)的图象经过点(3,4),k=3×4=12;依次判断:A、2×6=12经过,B、-1×(-12)=12经过,C、×24=12经过,D、-3×8=-24不经过,故选D熟练掌握反比例函数解析式的基础知识是解决本题的关键,难度不大二、填空题(本大题共5个小题,每小题4分,共20分)9、-1【解析】
根据一元二次方程根与系数的关系即可得出m+n=﹣2,mn=﹣1,将其代入m+n+mn中即可求出结论.【详解】∵m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,∴m+n=﹣2,mn=﹣1,则m+n+mn=﹣2﹣1=﹣1.故答案为:﹣1.本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.10、10【解析】
根据平行四边形对角线的性质可得BD=2BO,AO=3,继而根据勾股定理求出BO的长即可求得答案.【详解】∵四边形ABCD是平行四边形,∴BD=2BO,AO==3,∵AB⊥AC,∴∠BAO=90°,∴BO==5,∴BD=10,故答案为:10.本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的对角线互相平分是解题的关键.11、1【解析】
先根据平移的性质可得,,,再根据矩形的判定与性质可得,从而可得,然后根据平行线四边形的判定可得四边形ABED是平行四边形,最后根据平行四边形的面积公式即可得.【详解】由平移的性质得,,四边形ACFD是矩形四边形ABED是平行四边形(一组对边平行且相等的四边形是平行四边形)则四边形ABED的面积为故答案为:1.本题考查了平移的性质、平行四边形的判定、矩形的判定与性质等知识点,掌握平移的性质是解题关键.12、【解析】
试题分析:连接DB,BD与AC相交于点M,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB.∵∠DAB=60°,∴△ADB是等边三角形.∴DB=AD=1,∴BM=∴AM=∴AC=.同理可得AE=AC=()2,AG=AE=()3,…按此规律所作的第n个菱形的边长为()n-113、x≥0且x≠1【解析】
根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】解:由题意得,x≥0且x−1≠0,解得x≥0且x≠1.故答案为:x≥0且x≠1.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.三、解答题(本大题共5个小题,共48分)14、(1);;(2);【解析】
(1)先把左边的4移项到右边成-4,再配方,两边同时加32,左边得到完全平方,再得出两个一元一次方程进行解答;(2)先化成一元二次方程的一般式,得出a、b、c,计算b2-4ac判定根的情况,最后运用求根公式即可求解.【详解】解:(1)x2+6x+4=0x2+6x=-4x2+6x+9=-4+9(x+3)2=5;(2)5x2-3x=x+1,5x2-4x-1=0,b2-4ac=(-4)2-4×5×(-1)=36,,本题主要考查了运用配方法、公式法解一元二次方程,运用公式法解方程时,要先把方程化为一般式,找到a、b、c的值,然后用b2-4ac判定根的情况,最后运用公式即可求解.15、(1)y=14-x;(2)【解析】
(1)由2只红球的概率可求出布袋中球的总数16只,得到x+y=14,从而得到y与x的函数关系式;(2)先求出黄球的数量,然后根据概率的求法直接得出答案.【详解】解:(1)因为布袋中放有x只白球、y只黄球、2只红球,且红球的概率是.所以可得:y=14-x;(2)把x=6,代入y=14-6=8,所以随机地取出一只黄球的概率P==.故答案为(1)y=14-x;(2).本题考查了求随机事件的概率.16、(1)补图见解析;(2)甲胜出,理由见解析;(3)见解析.【解析】
(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;
(2)计算出甲乙两人的方差,比较大小即可做出判断;
(3)希望乙胜出,修改规则,使乙获胜的概率大于甲即可.【详解】(1)根据折线统计图得乙的射击成绩为2,4,6,8,1,1,8,9,9,10,则平均数为(环),中位数为1.2环,方差为.由图和表可得甲的射击成绩为9,6,1,6,2,1,1,8,9,平均数为1环.则甲第8次成绩为(环).所以甲的10次成绩为2,6,6,1,1,1,8,9,9,9,中位数为1环,方差为.补全表格如下:甲、乙射击成绩统计表平均数(环)中位数(环)方差命中10环的次数甲140乙12.41甲、乙射击成绩折线统计图(2)甲应胜出因为甲的方差小于乙的方差,甲的成绩比较稳定,故甲胜出.(3)制定的规则不唯一,如:如果希望乙胜出,应该制定的评判规则为平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲、乙的平均成绩相同,乙只有第2次射击比第4次射击少命中1环,且命中1次10环,而甲第2次比第1次第4次比第3次、第2次比第4次、第9次比第8次命中环数都低,且命中10环的次数为0,即随着比赛的进行,乙的射击成绩越来越好,故乙胜出.本题考查折线统计图,中位数,方差,平均数,以及统计表,读懂统计图,熟练掌握中位数,方差,平均数的计算是解本题的关键.17、(1)见解析;(2).【解析】
(1)根据已知条件推知四边形AEFD是平行四边形,AE⊥BC,则平行四边形AEFD是矩形;(2)先证明△ABE≌△DCF,得出△ABC是等边三角形,在利用面积公式列式计算即可得解.【详解】(1)证明:∵菱形ABCD∴AD∥BC,AD=BC∵CF=BE∴BC=EF∴AD∥EF,AD=EF∴四边形AEFD是平行四边形∵AE⊥BC∴∠AEF=90°∴平行四边形AEFD是矩形(2)根据题意可知∠ABE=∠DCF,AB=CD,CF=BE∴△ABE≌△DCF(SAS)∴矩形AEFD的面积=菱形ABCD的面积∵∠ABC=60°,∴△ABC是等边三角形AC=4,AO=2,AB=4,由菱形的对角线互相垂直可得BO=矩形AEFD的面积=菱形ABCD的面积=此题考查全等三角形的判定与性质,矩形的判定,菱形的性质,解题关键在于先求出AEFD是平行四边形.18、(1)抽样调查的人数是200人;(2)40,60,30;(3)补图见解析;(4)该市2016年中考的初中毕业生视力正常的学生大约有2400人.【解析】
(1)先根据4.0≤x<4.3的频数除以频率求出被调查的总人数,(2)用总人数乘以频率20%计算即可得到a,用总人数减去其他频数求出b,再用b除以总人数,即可求出m的值;(3)根据(2)求出a,b的值,即可补全统计图;(4)求出后两组的频率之和即可求出视力正常的人数占被统计人数的百分比,用总人数乘以所占的百分比即可得解.【详解】(1)抽样调查的人数是:人;(2)a=200×20%=40(人);b=200−20−40−70−10=60(人);m%=×100%=30%,则m=30;故答案为:40,60,30;(3)根据(2)求出a,b的值,补图如下:(4)视力正常的人数占被统计人数的百分比是:;根据题意得:(人)答:该市2016年中考的初中毕业生视力正常的学生大约有2400人.此题考查频数(率)分布表,频数(率)分布直方图,解题关键在于看懂图中数据一、填空题(本大题共5个小题,每小题4分,共20分)19、对角线互相垂直平分的四边形是菱形【解析】
解:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.所以小明这样折叠的依据是:对角线互相垂直平分的四边形是菱形.20、【解析】
根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】∵四边形CDEF是正方形,AC=5,BC=12,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=5-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴,∴,解得:x=,故答案为.此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.21、1.【解析】分析:连接O1A,O1B,先证明△AO1C≌△BO1D,从而可得S四边形ACO1D=S△AO1B=S正方形ABEF=,然后可求阴影部分面积之和.详解:如图,连接O1A,O1B.∵四边形ABEF是正方形,∴O1A=O1B,∠AO1B=90°.∵∠AO1C+∠AO1D=90°,∠BO1D+∠AO1D=90°,∴∠AO1C=∠BO1D.在△AO1C和△BO1D中,∵∠AO1C=∠BO1D,O1A=O1B,∠O1AC=∠O1BD=45°,∴△AO1C≌△BO1D,∴S四边形ACO1D=S△AO1B=S正方形ABEF=,∴阴影部分面积之和等于×4=1.故答案为:1.点睛:本题考查了正方形的性质,全等三角形的判定与性质,证明△AO1C≌△BO1D是解答本题的关键.22、①②④【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;
②利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;
③过B作BF⊥AE,交AE的延长线于F,利用③中的∠BEP=90°,利用勾股定理可求BE,结合△AEP是等腰直角三角形,可证△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;
④连接BD,求出△ABD的面积,然后减去△BDP的面积即可。【详解】解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,∴△APD≌△AEB(SAS);
故此选项成立;
②∵△APD≌△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED;
故此选项成立;
③过B作BF⊥AE,交AE的延长线于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,又∴点B到直线AE的距离为故此选项不正确;
④如图,连接BD,在Rt△AEP中,
∵AE=AP=1,又∵△APD≌△AEB,=S正方形ABCD故此选项正确.
∴正确的有①②④,故答案为:①②④本题考查了全等三角形的判定和性质的运用、正方形的性质的运用、正方形和三角形的面积公式的运用、勾股定理的运用等知识.23、3y2-y-1=0【解析】
将分式方程中3x22x+1换成3y,【详解】解:根据题意,得:3y-1y去分母,得:3y2-1=y,整理,得:3y2-y-1=0.故答案为:3y2-y-1=0.本题考查了用换元法解分式方程.二、解答题(本大题共3个小题,共30分)24、(1)45°;(2)证明见解析;(3)【解析】
(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吊车租赁合同书模板
- 扬州市劳动合同书范本参考
- 《复习资料单选题》课件
- 《基础大扫荡》课件
- 劳务派遣合同协议2024年2
- 音乐作品版权转让合同
- 圣诞节活动营销方案
- 六年级语文上册第五单元习作 围绕中心意思写 公开课一等奖创新教学设计
- 统编版四年级下册语文第五单元 群文阅读《妙笔写美景巧手著奇观》 公开课一等奖创新教学设计
- 专项债券项目资金绩效管理模板
- 2024中国烟草总公司合肥设计院招聘6人笔试易考易错模拟试题(共500题)试卷后附参考答案
- 中学生校园食品安全教育
- 冬季七防知识培训
- 2 让它们立起来 说课稿-2024-2025学年科学一年级上册青岛版
- 国家公务员考试(面试)试题及解答参考(2024年)
- 2024城市公共服务智能垃圾分类系统建设合同
- 国开(浙江)2024年秋《中国建筑史(本)》形考作业1-4答案
- 2024年学宪法、讲宪法题库及答案
- 医院检验科实验室生物安全程序文件SOP
- 第9课-隋唐时期的经济、科技与文化-【中职专用】《中国历史》课件(高教版2023基础模块)
- 个人嘉奖登记(报告)表(无水印)
评论
0/150
提交评论