




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省三亚华侨学校2025届高一上数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(为自然对数的底数,为常数)若该食品在的保鲜时间是384小时,在的保鲜时间是24小时,则该食品在的保险时间是()小时A.6 B.12C.18 D.242.定义在上的奇函数满足,且当时,,则()A. B.2C. D.3.函数的部分图象大致是图中的()A.. B.C. D.4.已知幂函数,在上单调递增.设,,,则,,的大小关系是()A. B.C. D.5.函数的单调递减区间为A. B.C. D.6.设,且,则下列不等式一定成立的是()A. B.C. D.7.角度化成弧度为()A. B.C. D.8.若,则所在象限是A.第一、三象限 B.第二、三象限C.第一、四象限 D.第二、四象限9.已知函数在区间上是增函数,则的取值范围是()A. B.C. D.10.已知幂函数的图象过点,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若关于的不等式对任意的恒成立,则实数的取值范围为____________12.若函数满足:对任意实数,有且,当时,,则时,________13.某池塘里原有一块浮萍,浮萍蔓延后的面积(单位:平方米)与时间(单位:月)的关系式为(且)图象如图所示.则下列结论:①浮萍蔓延每个月增长的面积都相同;②浮萍蔓延个月后的面积是浮萍蔓延个月后的面积的;③浮萍蔓延每个月增长率相同,都是;④浮萍蔓延到平方米所经过的时间与蔓延到平方米所经过的时间的和比蔓延到平方米所经过的时间少.其中正确结论的序号是_____14.半径为2cm,圆心角为的扇形面积为.15.函数是幂函数,且在上是减函数,则实数__________.16.已知,,且,则的最小值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的定义域为A,的值域为B(1)求A,B;(2)设全集,求18.(1)计算:;(2)计算:19.已知,是方程的两根.(1)求实数的值;(2)求的值;(3)求的值.20.已知,.(1)求的值;(2)求的值.21.已知,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先阅读题意,再结合指数运算即可得解.【详解】解:由题意有,,则,即,则,即该食品在的保险时间是6小时,故选A.【点睛】本题考查了指数幂的运算,重点考查了解决实际问题的能力,属基础题.2、D【解析】根据题意,由,分析可得,即可得函数的周期为4,则有,由函数的解析式以及奇偶性可得的值,即可得答案【详解】解:根据题意,函数满足,即,则函数的周期为4,所以又由函数为奇函数,则,又由当,时,,则;则有;故选:【点睛】本题考查函数奇偶性、周期性的应用,注意分析得到函数的周期,属于中档题3、D【解析】根据函数的奇偶性及函数值得符号即可得到结果.【详解】解:函数的定义域为R,即∴函数为奇函数,排除A,B,当时,,排除C,故选:D【点睛】函数识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题4、A【解析】根据幂函数的概念以及幂函数的单调性求出,在根据指数函数与对数函数的单调性得到,根据幂函数的单调性得到,再结合偶函数可得答案.【详解】根据幂函数的定义可得,解得或,当时,,此时满足在上单调递增,当时,,此时在上单调递减,不合题意.所以.因为,,,且,所以,因为在上单调递增,所以,又因为为偶函数,所以,所以.故选:A【点睛】关键点点睛:掌握幂函数的概念和性质、指数函数与对数函数的单调性是解题关键.5、A【解析】根据所给的二次函数的二次项系数大于零,得到二次函数的图象是一个开口向上的抛物线,根据对称轴,考查二次函数的变化区间,得到结果【详解】解:函数的二次项的系数大于零,抛物线的开口向上,二次函数的对称轴是,函数的单调递减区间是故选A【点睛】本题考查二次函数的性质,属于基础题6、D【解析】利用特殊值及不等式的性质判断可得;【详解】解:因为,对于A,若,,满足,但是,故A错误;对于B:当时,,故B错误;对于C:当时没有意义,故C错误;对于D:因为,所以,故D正确;故选:D7、A【解析】根据题意,结合,即可求解.【详解】根据题意,.故选:A.8、A【解析】先由题中不等式得出在第二象限,然后求出的范围,即可判断其所在象限【详解】因为,,所以,故在第二象限,即,故,当为偶数时,在第一象限,当为奇数时,在第三象限,即所在象限是第一、三象限故选A.【点睛】本题考查了三角函数的象限角,属于基础题9、A【解析】根据二次函数的单调区间及增减性,可得到,求解即可.【详解】函数,开口向下,对称轴为函数在区间上是增函数,所以,解得,所以实数a的取值范围是.故选:A10、A【解析】待定系数求得幂函数解析式,再求对数运算的结果即可.【详解】设幂函数为,由题意得,,∴故选:A【点睛】本题考查幂函数解析式的求解,涉及对数运算,属综合简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据题意显然可知,整理不等式得:,令,求出在的范围即可求出答案.【详解】由题意知:,即对任意的恒成立,当,得:,即对任意的恒成立,即对任意的恒成立,令,在上单减,所以,所以.故答案为:12、【解析】由,可知.所以函数是周期为4的周期函数.,时,..对任意实数,有,可知函数关于点(1,0)中心对称,所以,又.所以.综上可知,时,.故答案为.点睛:抽象函数的周期性:(1)若,则函数周期为T;(2)若,则函数周期为(3)若,则函数的周期为;(4)若,则函数的周期为.13、②④【解析】由,可求得的值,可得出,计算出萍蔓延月至月份增长的面积和月至月份增长的面积,可判断①的正误;计算出浮萍蔓延个月后的面积和浮萍蔓延个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【详解】由已知可得,则.对于①,浮萍蔓延月至月份增长的面积为(平方米),浮萍蔓延月至月份增长的面积为(平方米),①错;对于②,浮萍蔓延个月后的面积为(平方米),浮萍蔓延个月后的面积为(平方米),所以,浮萍蔓延个月后的面积是浮萍蔓延个月后的面积的,②对;对于③,浮萍蔓延第至个月的增长率为,所以,浮萍蔓延每个月增长率相同,都是,③错;对于④,浮萍蔓延到平方米所经过的时间、蔓延到平方米所经过的时间的和蔓延到平方米的时间分别为、、,则,,,所以,,所以,浮萍蔓延到平方米所经过的时间与蔓延到平方米所经过的时间的和比蔓延到平方米所经过的时间少,④对.故答案为:②④.14、【解析】求出扇形的弧长,利用扇形面积公式求解即可.【详解】因为半径为,圆心角为的扇形,弧长为,所以扇形面积为:故答案为.【点睛】本题考查扇形的面积公式的应用,考查计算能力,属于基础题.15、2【解析】根据函数为幂函数求参数m,讨论所求得的m判断函数是否在上是减函数,即可确定m值.【详解】由题设,,即,解得或,当时,,此时函数在上递增,不合题意;当时,,此时函数在上递减,符合题设.综上,.故答案为:216、6【解析】由可知,要使取最小值,只需最小即可,故结合,求出的最小值即可求解.【详解】由,,得(当且仅当时,等号成立),又因,得,即,由,,解得,即,故.因此当时,取最小值6.故答案为:6.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)由,可得定义域,由二次函数性质得得值域,即得;(2)根据集合运算法则计算【详解】(1)由得:,解得..∴,(2)由(1)得,∴.【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题18、(1);(2).【解析】(1)由根式化为分数指数幂,再由幂的运算法则计算(2)利用对数的换底公式和运算法则计算【详解】(1)原式=8+0.1+1=9.1(2)原式==1+=1+2=319、(1);(2);(3)【解析】(1)根据方程的根与系数关系可求,,然后结合同角平方关系可求,(2)结合(1)可求,,结合同角基本关系即可求,(3)利用将式子化为齐次式,再利用同角三角函数的基本关系,将弦化切,代入可求【详解】解:(1)由题意可知,,,∴,∴,∴,(2)方程的两根分别为,,∵,∴,∴,,则,(3)【点睛】本题主要考查了同角三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中南c语言考试题及答案
- 云南衡水实验中学2024-2025学年物理高二第二学期期末预测试题含解析
- 云南省峨山县大龙潭中学2025年物理高二下期末预测试题含解析
- 铜仁市重点中学2025年高二数学第二学期期末综合测试模拟试题含解析
- 新疆乌鲁木齐市四中2025年高二生物第二学期期末联考模拟试题含解析
- 滕州市第一中学2024-2025学年高二物理第二学期期末学业水平测试模拟试题含解析
- 浙江省宁波市镇海中学2025年高二物理第二学期期末复习检测模拟试题含解析
- 房地产开发财务担保合同成本核算与税务筹划
- 现代化工业园区厂房股权全面交接合同
- 财务分析及投资建议合同范本
- 小升初谚语试题及答案
- 福建百校联考2025届高三5月高考押题卷-英语试卷(含答案)
- 知识图谱构建与应用试题及答案
- 湖北省武汉市2025届高三五月模拟训练英语试题(含答案无听力原文及音频)
- 基因编辑技术的临床应用与未来发展方向-洞察阐释
- 浙江省杭州市2024年中考英语真题(含答案)
- 2024年黑龙江省哈尔滨市中考数学试卷(附答案)
- 《陆上风电场工程设计概算编制规定及费用标准》(NB-T 31011-2019)
- 庭院绿化施工合同
- 立式数控加工中心主轴箱设计
- 出境竹木草制品生产企业年度考核自查表.
评论
0/150
提交评论