




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省延安市延川县中学2025届高二上数学期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在递增等比数列中,为其前n项和.已知,,且,则数列的公比为()A.3 B.4C.5 D.62.已知椭圆是椭圆上关于原点对称的两点,设以为对角线的椭圆内接平行四边形的一组邻边斜率分别为,则()A.1 B.C. D.3.对任意实数k,直线与圆的位置关系是()A.相交 B.相切C.相离 D.与k有关4.抛物线上点的横坐标为4,则到抛物线焦点的距离等于()A.12 B.10C.8 D.65.已知空间向量,,,下列命题中正确的个数是()①若与共线,与共线,则与共线;②若,,非零且共面,则它们所在的直线共面;⑧若,,不共面,那么对任意一个空间向量,存在唯一有序实数组,使得;④若,不共线,向量,则可以构成空间的一个基底.A.0 B.1C.2 D.36.若,则()A.1 B.2C.3 D.47.已知函数为偶函数,且当时,,则不等式的解集为()A. B.C. D.8.为了防控新冠病毒肺炎疫情,某市疾控中心检测人员对外来入市人员进行核酸检测,人员甲、乙均被检测.设命题为“甲核酸检测结果为阴性”,命题为“乙核酸检测结果为阴性”,则命题“至少有一位人员核酸检测结果不是阴性”可表示为()A. B.C. D.9.中国古代有一道数学题:“今有七人差等均钱,甲、乙均七十七文,戊、己、庚均七十五文,问戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七个人分钱,所分得的钱数构成等差数列,甲、乙两人共分得77文,戊、己、庚三人共分得75文,则戊、己两人各分得多少文钱?则下列说法正确的是()A.戊分得34文,己分得31文 B.戊分得31文,己分得34文C.戊分得28文,己分得25文 D.戊分得25文,己分得28文10.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定11.已知圆,圆C2:x2+y2-x-4y+7=0,则“a=1”是“两圆内切”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件12.中国历法推测遵循以测为辅,以算为主的原则.例如《周髀算经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.二十四节气中,从冬至到夏至的十三个节气依次为:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种、夏至.已知《周髀算经》中记录某年的冬至的晷影长为13尺,夏至的晷影长是1.48尺,按照上述规律,那么《周髀算经》中所记录的立夏的晷影长应为()A.尺 B.尺C.尺 D.尺二、填空题:本题共4小题,每小题5分,共20分。13.已知直线与平行,则___________.14.已知抛物线的顶点为O,焦点为F,动点B在C上,若点B,O,F构成一个斜三角形,则______15.已知函数,则曲线在点处的切线方程为______16.已知点P是抛物线上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为______________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处的切线方程为.(1)求的解析式;(2)求函数图象上的点到直线的距离的最小值.18.(12分)如图,在三棱锥中,已知△ABC和△PBC均为正三角形,D为BC的中点(1)求证:平面;(2)若,,求三棱锥的体积19.(12分)已知复数,其中i是虚数单位,m为实数(1)当复数z为纯虚数时,求m的值;(2)当复数在复平面内对应的点位于第三象限时,求m的取值范围20.(12分)如图,正三棱柱的侧棱长为,底面边长为,点为的中点,点在直线上,且(1)证明:面;(2)求平面和平面夹角的余弦值21.(12分)已知椭圆:经过点为,且.(1)求椭圆的方程;(2)若直线与椭圆相切于点,与直线相交于点.已知点,且,求此时的值.22.(10分)设函数(1)求函数的单调区间;(2)若有两个零点,,求的取值范围,并证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由已知结合等比数列的性质可求出、,然后结合等比数列的求和公式求解即可.【详解】解:由题意得:是递增等比数列又,,故故选:B2、C【解析】根据椭圆的对称性和平行四边形的性质进行求解即可.【详解】是椭圆上关于原点对称两点,所以不妨设,即,因为平行四边形也是中心对称图形,所以也是椭圆上关于原点对称的两点,所以不妨设,即,,得:,即,故选:C3、A【解析】判断直线恒过定点,可知定点在圆内,即可判断直线与圆的位置关系.【详解】由可知,即该圆的圆心坐标为,半径为,由可知,则该直线恒过定点,将点代入圆的方程可得,则点在圆内,则直线与圆的位置关系为相交.故选:.4、C【解析】根据焦半径公式即可求出【详解】因为,所以,所以故选:C5、B【解析】用向量共线或共面的基本定理即可判断.【详解】若与,与共线,,则不能判定,故①错误;若非零向量共面,则向量可以在一个与组成的平面平行的平面上,故②错误;不共面,意味着它们都是非零向量,可以作为一组基底,故③正确;,∴与共面,故不能组成一个基底,故④错误;故选:C.6、C【解析】由二项分布的方差公式即可求解.【详解】解:因为,所以.故选:C.7、D【解析】结合导数以及函数的奇偶性判断出的单调性,由此化简不等式来求得不等式的解集.【详解】当时,单调递增,,所以单调递增.因为是偶函数,所以当时,单调递减.,,,或.即不等式的解集为.故选:D8、D【解析】表示出和,直接判断即可.【详解】命题为“甲核酸检测结果为阴性”,则命题为“甲核酸检测结果不是阴性”;命题为“乙核酸检测结果为阴性”,则命题为“乙核酸检测结果不是阴性”.故命题“至少有一位人员核酸检测结果不是阴性”可表示为.故选D.9、C【解析】设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,,再根据题意列方程组可解得结果.【详解】依题意,设甲、乙、丙、丁、戊、己、庚所分钱数分别为,,,,,,,则,解得,所以戊分得(文),己分得(文),故选:C.10、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D.11、B【解析】先得出圆的圆心和半径,求出两圆心间的距离,半径之差,根据两圆内切得出方程,从而得出答案.【详解】圆的圆心半径的圆心半径两圆心之间的距离为两圆的半径之差为当两圆内切时,,解得或所以当,可得两圆内切,当两圆内切时,不能得出(可能)故“”是“两圆内切”的充分不必要条件故选:B12、B【解析】根据等差数列定义求得公差,再求解立夏的晷影长在数列中所对应的项即可【详解】设从冬至到夏至的十三个节气依次为等差数列的前13项,则所以公差为,则立夏的晷影长应为(尺)故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据平行可得斜率相等列出关于参数的方程,解方程进行检验即可求解.【详解】因为直线与平行,所以,解得或,又因为时,,,所以直线,重合故舍去,而,,,所以两直线平行.所以,故答案为:3.【点睛】(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论14、2【解析】画出简单示意图,令,根据抛物线定义可得,应用数形结合及B在C上,求目标式的值.【详解】如下图,令,直线为抛物线准线,轴,由抛物线定义知:,又且,所以,故,又,故.故答案为:2.【点睛】关键点点睛:应用抛物线的定义将转化为,再由三角函数的定义及点在抛物线上求值.15、【解析】先求出,求出导函数及,进而求出切线方程.【详解】∵,∴,又,∴在处的切线方程为,即故答案为:16、【解析】由抛物线的定义得:,所以,当三点共线时,最小可得答案.【详解】如图所示:,由抛物线的定义得:,所以,由图象知:当三点共线时,最小,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由题可得,然后利用导数的几何意义即求;(2)由题可得切点到直线的距离最小,即得.【小问1详解】∵函数,∴的定义域为,,∴在处切线的斜率为,由切线方程可知切点为,而切点也在函数图象上,解得,∴的解析式为;【小问2详解】由于直线与直线平行,直线与函数在处相切,所以切点到直线的距离最小,最小值为,故函数图象上的点到直线的距离的最小值为.18、(1)证明见解析;(2).【解析】【小问1详解】因为△ABC和△PBC为正三角形,D为BC的中点,所以,又,所以平面【小问2详解】因为△ABC和△PBC为正三角形,且,所以,又,所以正三角形的面积为,所以.19、(1)4(2)【解析】(1)根据纯虚数,实部为零,虚部不为零列式即可;(2)根据第三象限,实部小于零,虚部小于零,列式即可.【小问1详解】因为为纯虚数,所以解得或,且且综上可得,当为纯虚数时;【小问2详解】因为在复平面内对应的点位于第三象限,解得或,且即,故的取值范围为.20、(1)证明见解析(2)【解析】(1)证明平面,可得出,再由结合线面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,利用空间向量法可求得结果.【小问1详解】证明:正中,点为的中点,,因为平面,平面,则,,则平面,平面,则,又,且,平面.【小问2详解】解:因为,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,平面,平面,则,又因为,,故平面,所以,平面的一个法向量为,则.因此,平面和平面夹角的余弦值为.21、(1);(2).【解析】(1)根据椭圆离心率公式,结合代入法进行求解即可;(2)根据直线与椭圆的位置关系求出点的坐标,结合平面向量垂直的性质进行求解即可.【详解】(1)由已知得,,而,解得,椭圆的方程为;(2)设直线方程为代入得,化简得由,得,,设,则,,则设,则,则,所以在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度健康医疗大数据预付款全新合作协议
- 二零二五年度幼儿园保育员聘用合同书-幼儿教育创新项目合作
- 二零二五年度环保咨询服务营业执照转让合同
- 二零二五年度一手房购房意向金预定合同
- 2025年度有限责任公司股东离任协议书
- 二零二五年度拆除房屋及土地回收合同范本
- 二零二五年度学校食堂承包经营与服务满意度提升协议
- 二零二五年度离职后商业秘密保护及竞业限制合同
- 二零二五年度房屋维修安全责任保险协议
- 二零二五年度美容院养生保健入股合同协议
- 《社保知识培训》教学课件
- 肌力与肌张力课件
- 学生档案登记表
- is620p系列伺服用户手册-v0.2综合版
- 电信渠道管理人员考核管理办法
- 勘察工作内容及方案
- 八年级数学(上册)整式计算题练习100道无答案_新人教版
- 评审会专家意见表
- 托管中心学生家长接送登记表
- 桥梁施工危险源辨识与防控措施
- YD 5062-1998 通信电缆配线管道图集_(高清版)
评论
0/150
提交评论