版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省眉山外国语学校2025届高一数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的最小正周期是()A.1 B.2C. D.2.如图,一个半径为3m的筒车按逆时针方向每分转1.5圈,筒车的轴心O距离水面的高度为2.2m,设筒车上的某个盛水筒P到水面的距离为d(单位:m)(在水面下则d为负数),若从盛水筒P刚浮出水面时开始计算时间,则d与时间t(单位:s)之间的关系为,则其中A,,K的值分别为()A.6,,2.2 B.6,,2.2C.3,,2.2 D.3,,2.23.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是()A. B.C. D.4.函数的定义域是()A.(-1,1) B.C.(0,1) D.5.已知集合,,若,则实数的值为()A. B.C. D.6.空间直角坐标系中,已知点,则线段的中点坐标为A. B.C. D.7.已知集合,若,则()A.-1 B.0C.2 D.38.已知,则=A.2 B.C. D.19.设集合,则()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)10.设,,,则a,b,c的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则__________.12.《九章算术》是中国古代的数学名著,其中《方田》一章涉及到了弧田面积的计算问题,如图所示,弧田是由弧AB和弦AB所围成的图中阴影部分若弧田所在圆的半径为1,圆心角为,则此弧田的面积为____________.13.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.14.已知函数①当a=1时,函数的值域是___________;②若函数的图像与直线y=1只有一个公共点,则实数a的取值范围是___________15.已知函数,,其中表示不超过x的最大整数.例如:,,.①______;②若对任意都成立,则实数m的取值范围是______16.__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求下列各式的值:(1);(2).18.已知cosα=-35,且(1)求sinα(2)求sinα+6πcos19.将函数(且)的图象向左平移1个单位,再向上平移2个单位,得到函数的图象,(1)求函数的解析式;(2)设函数,若对一切恒成立,求实数的取值范围;(3)若函数在区间上有且仅有一个零点,求实数的取值范围.20.已知tan(1)求tana(2)求sin2a21.已知二次函数满足条件和,(1)求;(2)求在区间()上的最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据余弦函数的性质计算可得;【详解】因为,所以函数的最小正周期;故选:A2、D【解析】根据实际含义分别求的值即可.【详解】振幅即为半径,即;因为逆时针方向每分转1.5圈,所以;;故选:D.3、A【解析】由图象知函数的定义域排除选项选项B、D,再根据不成立排除选项C,即可得正确选项.【详解】由图知的定义域为,排除选项B、D,又因为当时,,不符合图象,所以排除C,故选:A【点睛】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.4、B【解析】根据函数的特征,建立不等式求解即可.【详解】要使有意义,则,所以函数的定义域是.故选:B5、B【解析】根据集合,,可得,从而可得.【详解】因为,,所以,所以.故选:B6、A【解析】点,由中点坐标公式得中得为:,即.故选A.7、C【解析】根据元素与集合的关系列方程求解即可.【详解】因为,所以或,而无实数解,所以.故选:C8、D【解析】.故选.9、C【解析】由题意分别计算出集合的补集和集合,然后计算出结果.【详解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故选:C10、A【解析】根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.【详解】由题意知,,即,,即,,又,即,∴故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】先求出,然后再求的值.【详解】由题意可得,所以,故答案为:12、【解析】根据题意所求面积,再根据扇形和三角形面积公式,进行求解即可.【详解】易知为等腰三角形,腰长为,底角为,,所以,弧田的面积即图中阴影部分面积,根据扇形面积及三角形面积可得:所以.故答案为:.13、【解析】正方体体积8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π故答案为:12π点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.14、①.(-∞,1]②.(-1,1]【解析】①分段求值域,再求并集可得的值域;②转化为=在上与直线只有一个公共点,分离a求值域可得实数a的取值范围【详解】①当a=1时,即当x≤1时,,当x>1时,,综上所述当a=1时,函数的值域是,②由无解,故=在上与直线只有一个公共点,则有一个零点,即实数的取值范围是.故答案为:;.15、①.②.【解析】①代入,由函数的定义计算可得答案;②分别计算时,时,时,时,时,时,时,的值,建立不等式,求解即可【详解】解:①∵,∴②当时,;当时,;当时,;当时,;当时,;当时,;当时,又对任意都成立,即恒成立,∴,∴,∴实数m的取值范围是故答案为:;.【点睛】关键点睛:本题考查函数的新定义,关键在于理解函数的定义,分段求值,建立不等式求解.16、1【解析】应用诱导公式化简求值即可.【详解】原式.故答案为:1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)2【解析】(1)结合指数的运算化简计算即可求出结果;(2)结合对数的运算化简计算即可求出结果;【小问1详解】【小问2详解】18、(1)4(2)-【解析】(1)根据三角函数的同角关系求得sinα=±(2)利用诱导公式将原式化简即可得出结果.【小问1详解】因为cosα=-35因为α是第二象限角,所以sinα=【小问2详解】sinα+6π19、(1)(2)(3)【解析】(1)由图象的平移特点可得所求函数的解析式;(2)求得的解析式,可得对一切恒成立,再由二次函数的性质可得所求范围;(3)将化简为,由题意可得只需在区间,,上有唯一解,利用图象,数形结合求得答案.【小问1详解】将函数且的图象向左平移1个单位,得到的图象,再向上平移2个单位,得到函数的图象,即:;【小问2详解】函数,,若对一切恒成立,则对一切恒成立,由在递增,可得,所以,即的取值范围是,;【小问3详解】关于的方程且,故函数在区间上有且仅有一个零点,等价于在区间上有唯一解,作出函数且的图象,如图示:当时,方程的解有且只有1个,故实数p的取值范围是.20、(1)3;(2)35【解析】(1)根据正切的差角公式即可直接求出答案;(2)利用齐次式即可直接求出答案.【小问1详解】因为tana-π4=1解得tanα=3【小问2详解】sin=21、(1);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度机械设备购买合同上海某制造商3篇
- 2024年度物业公司与小区物业服务合同2篇
- 2024年度商品混凝土供应链融资与支付合同3篇
- 2024年度智能硬件研发与生产许可合同3篇
- 2024年度上海市黄浦区地产买卖合同2篇
- 车位划线施工合同
- 二零二四年度融资租赁设备租赁期满融资终止合同4篇
- 二零二四年度园林设施维护保养合同2篇
- 电梯井道土建施工合同
- 2024年分期付款软件购买许可合同2篇
- 医院检验科实验室生物安全程序文件SOP
- 井室施工技术交底
- Q∕GDW 11514-2021 变电站智能机器人巡检系统检测规范
- 市心血管重点专科汇报材料
- 博物馆陈列展览大纲(共9页)
- 机械零件轴测图精品
- 英语《花木兰》短剧剧本
- 入侵报警系统工程施工要求及调试
- 基于PLC的燃油锅炉控制系统设计毕设设计说明书论文
- 小学生垃圾分类(全)(课堂PPT)
- 保险公司绩效考核办法
评论
0/150
提交评论