浙江省宁波市鄞州区诺丁汉大学附中2025届高二数学第一学期期末复习检测模拟试题含解析_第1页
浙江省宁波市鄞州区诺丁汉大学附中2025届高二数学第一学期期末复习检测模拟试题含解析_第2页
浙江省宁波市鄞州区诺丁汉大学附中2025届高二数学第一学期期末复习检测模拟试题含解析_第3页
浙江省宁波市鄞州区诺丁汉大学附中2025届高二数学第一学期期末复习检测模拟试题含解析_第4页
浙江省宁波市鄞州区诺丁汉大学附中2025届高二数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市鄞州区诺丁汉大学附中2025届高二数学第一学期期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过两点、的直线的倾斜角为,则的值为()A.或 B.C. D.2.已知F(3,0)是椭圆的一个焦点,过F且垂直x轴的弦长为,则该椭圆的方程为()A.+=1 B.+=1C.+=1 D.+=13.某次生物实验6个小组的耗材质量(单位:千克)分别为1.71,1.58,1.63,1.43,1.85,1.67,则这组数据的中位数是()A.1.63 B.1.67C.1.64 D.1.654.已知各项均为正数的等比数列满足,若存在两项,使得,则的最小值为()A.4 B.C. D.95.椭圆上的一点M到其左焦点的距离为2,N是的中点,则等于()A.1 B.2C.4 D.86.过抛物线焦点的直线与抛物线交于两点,,抛物线的准线与轴交于点,则的面积为()A. B.C. D.7.已知抛物线,为坐标原点,以为圆心的圆交抛物线于、两点,交准线于、两点,若,,则抛物线方程为()A. B.C. D.8.中秋节吃月饼是我国的传统习俗,若一盘中共有两种月饼,其中5块五仁月饼、6块枣泥月饼,现从盘中任取3块,在取到的都是同种月饼的条件下,都是五仁月饼的概率是()A B.C. D.9.以下四个命题中,正确的是()A.若,则三点共线B.C.为直角三角形的充要条件是D.若为空间的一个基底,则构成空间的另一个基底10.下列命题中,真命题的个数为()(1)是为双曲线的充要条件;(2)若,则;(3)若,,则;(4)椭圆上的点距点最近的距离为;A.个 B.个C.个 D.个11.已知分别是双曲线的左、右焦点,动点P在双曲线的左支上,点Q为圆上一动点,则的最小值为()A.6 B.7C. D.512.若圆与直线相切,则实数的值为()A. B.或3C. D.或二、填空题:本题共4小题,每小题5分,共20分。13.曲线在处的切线方程为______.14.若双曲线的渐近线与圆相切,则该双曲线的实轴长为______15.已知离心率为,且对称轴都在坐标轴上的双曲线C过点,过双曲线C上任意一点P,向双曲线C的两条渐近线分别引垂线,垂足分别是A,B,点O为坐标原点,则四边形OAPB的面积为______16.设公差的等差数列的前项和为,已知,且,,成等比数列,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线,抛物线.(1)与有公共点,求的取值范围;(2)是坐标原点,过的焦点且与交于两点,求的面积.18.(12分)已知函数.(1)证明:;(2)若函数有两个零点,求实数的取值范围.19.(12分)如图,已知顶点,,动点分别在轴,轴上移动,延长至点,使得,且.(1)求动点的轨迹;(2)过点分别作直线交曲线于两点,若直线的倾斜角互补,证明:直线的斜率为定值;(3)过点分别作直线交曲线于两点,若,直线是否经过定点?若是,求出该定点,若不是,说明理由.20.(12分)如图,在四棱锥中,为平行四边形,,平面,且,点是的中点.(1)求证:平面;(2)在线段上(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.21.(12分)已知函数满足.(1)求的解析式,并判断其奇偶性;(2)若对任意,不等式恒成立,求实数a的取值范围.22.(10分)已知抛物线的方程为,点,过点的直线交抛物线于,两点(1)是否为定值?若是,求出该定值;若不是,说明理由;(2)若点是直线上的动点,且,求面积的最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用斜率公式可得出关于实数的等式与不等式,由此可解得实数的值.详解】由斜率公式可得,即,解得.故选:D.2、C【解析】根据已知条件求得,由此求得椭圆的方程.【详解】依题意,所以椭圆方程为.故选:C3、D【解析】将已有数据从小到大排序,根据中位数的定义确定该组数据的中位数.【详解】由题设,将数据从小到大排序可得:,∴中位数为.故选:D.4、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【详解】因为各项均为正数的等比数列满足,可得,即解得或(舍去)∵,,∴=当且仅当,即m=2,n=4时,等号成立故的最小值等于.故选:C【点睛】方法点睛:本题主要考查等比数列的通项公式和基本不等式的应用,解题的关键是常量代换的技巧,所谓常量代换,就是把一个常数用代数式来代替,如,再把常数6代换成已知中的m+n,即.常量代换是基本不等式里常用的一个技巧,可以优化解题,提高解题效率.5、C【解析】先利用椭圆定义得到,再利用中位线定理得即可.【详解】由椭圆方程,得,由椭圆定义得,又,,又为的中点,为的中点,线段为中位线,∴.故选:C.6、B【解析】画出图形,利用已知条件结合抛物线的定义求解边长CF,BK,然后求解三角形的面积即可【详解】如图,设拋物线的准线为,过作于,过作于,过作于,设,则根据抛物线的定义可得,,,的面积为,故选:.7、C【解析】设圆的半径为,根据已知条件可得出关于的方程,求出正数的值,即可得出抛物线的方程.【详解】设圆的半径为,抛物线的准线方程为,由勾股定理可得,因为,将代入抛物线方程得,可得,不妨设点,则,所以,,解得,因此,抛物线的方程为.故选:C.8、C【解析】分别求出取到3块月饼都是同种月饼和取到3块月饼都是五仁月饼的种数,再根据概率公式即可得解.【详解】解:由题意可得,取到3块月饼都是同种月饼有种情况,取到3块月饼都是五仁月饼有种情况,所以在取到的都是同种月饼的条件下,都是五仁月饼的概率是.故选:C.9、D【解析】利用向量共线的推论可判断A,利用数量积的定义可判断B,利用充要条件的概念可判断C,利用基底的概念可判断D.【详解】对于A,若,,所以三点不共线,故A错误;对于B,因为,故B错误;对于C,由可推出为直角三角形,由为直角三角形,推不出,所以为直角三角形的充分不必要条件是,故C错误;对于D,若为空间的一个基底,则不共面,若不能构成空间的一个基底,设,整理可得,即共面,与不共面矛盾,所以能构成空间的另一个基底,故D正确.故选:D.10、A【解析】利用方程表示双曲线求出的取值范围,利用集合的包含关系可判断(1)的正误;直接判断命题的正误,可判断(2)的正误;利用空间向量垂直的坐标表示可判断(3)的正误;利用椭圆的有界性可判断(4)的正误.【详解】对于(1),若曲线为双曲线,则,即,解得或,因为或,因此,是为双曲线的充分不必要条件,(1)错;对于(2),若,则或,(2)错;对于(3),,则,(3)对;对于(4),设点为椭圆上一点,则且,则点到点的距离为,(4)错.故选:A.11、A【解析】由双曲线的定义及三角形的几何性质可求解.【详解】如图,圆的圆心为,半径为1,,,当,,三点共线时,最小,最小值为,而,所以故选:A12、D【解析】利用圆心到直线的距离等于半径可得答案.【详解】若圆与直线相切,则到直线的距离为,所以,解得,或.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出函数的导函数,然后结合导数的几何意义求解即可.【详解】解:由,得,则,即当时,,所以切线方程为:,故答案为:.【点睛】本题考查了曲线在某点处的切线方程的求法,属基础题.14、【解析】由双曲线方程写出渐近线,根据相切关系,结合点线距离公式求参数a,即可确定实轴长.【详解】由题设,渐近线方程为,且圆心为,半径为1,所以,由相切关系知:,可得,又,即,所以双曲线的实轴长为.故答案为:15、2【解析】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,可得双曲线方程为,设,则到两渐近线的距离为,,从而可求四边形的面积【详解】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,又双曲线过点,,∴,故双曲线方程为,∴渐近线方程为,设,则到两渐近线的距离为,,且,∵渐近线方程为,∴四边形为矩形,∴四边形的面积为故答案为:216、##0.4【解析】应用等比中项的性质及等差数列通项公式求公差d,进而写出等差数列的通项公式、前n项和公式,再求目标式的最小值.【详解】由题设,,则,整理得,又,解得,故,,所以,故当时目标式有最小值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)联立直线l与抛物线C的方程消去x,借助判别式建立不等式求解作答.(2)利用(1)中信息求出点纵坐标差的绝对值即可计算作答.【小问1详解】依题意,由消去x并整理得:,因与有公共点,则,解得:,所以的取值范围是.【小问2详解】抛物线的焦点,则,设,由(1)知,,则,因此,,所以的面积.18、(1)证明见解析;(2).【解析】(1)令,求导得到函数的增区间为,减区间为,故,得到证明.(2),讨论和两种情况,计算函数的单调区间得到,解得答案.【详解】(1)令,有,令可得,故函数的增区间为,减区间为,,故有.(2)由①当时,,此时函数的减区间为,没有增区间;②当时,令可得,此时函数的增区间为,减区间为.若函数有两个零点,必须且,可得,此时,又由,当时,由(1)有,取时,显然有,当时,故函数有两个零点时,实数的取值范围为.【点睛】本题考查了利用导数证明不等式,根据零点求参数,意在考查学生的计算能力和应用能力.19、(1);(2)证明见解析;(3).【解析】(1)设点M,P,Q的坐标,将向量进行坐标化,整理即可得轨迹方程;(2)设点,,直线的倾斜角互补,则两直线斜率互为相反数,用斜率公式计算得到,即可计算kAB;(3)若,由两直线斜率积为-1,可得到关于与的等量关系,写出直线AB的方程,将等量关系代入直线方程整理可得直线AB经过的定点【详解】(1)设,,.由,得,即.因为,所以,所以.所以动点的轨迹为抛物线,其方程为.(2)证明:设点,,若直线的倾斜角互补,则两直线斜率互为相反数,又,,所以,,整理得,所以.(3)因为,所以,即,①直线的方程为:,整理得:,②将①代入②得,即,当时,即直线经过定点.【点睛】本题考查直接法求轨迹方程,考查直线斜率为定值的求法和直线恒过定点问题.20、(1)见解析(2)存在,【解析】(1)连接交于点,由三角形中位线性质知,由线面平行判定定理证得结论;(2)以为原点建立空间直角坐标系,假设,可用表示出点坐标;根据二面角的向量求法可根据二面角的余弦值构造出关于的方程,从而解得结果.【详解】(1)连接交于点,连接,四边形为平行四边形,为中点,又为中点,,平面,平面,平面;(2)平面,,两两互相垂直,则以为坐标原点,可建立如下图所示的空间直角坐标系:则,,,,,,设,且,则,,即,设平面的法向量,又,,则,令,则,,;设平面的一个法向量,又,,则,令,则,,;,解得:或,二面角的余弦值为,二面角为锐二面角,不满足题意,舍去,即.在线段上存在点,时,二面角的余弦值为.【点睛】本题考查立体几何中的线面平行关系的证明、存在性问题的求解;求解存在性问题的关键是能够利用共线向量的方式将所求点坐标表示出来,进而利用二面角的向量求法构造方程;易错点是忽略二面角的范围,造成参数值求解错误.21、(1),是奇函数(2)【解析】(1)由求出,进而求得的解析式,利用奇偶函数的定义判断函数的奇偶性即可;(2)根据幂函数的单调性可得函数的单调性,求出函数的最小值,将不等式恒成立转化为对任意使得恒成立即可.【小问1详解】因为,所以,所以.所以.的定义城为,且,所以是奇函数.【小问2详解】因为,在上均为增函数,所以在上增函数,所以.对任意,不等式恒成立,则,所以,即实数a的取值范固为.22、(1)是,;(2)【解析】(1)由题意设出所在直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论