2025届浙江省丽水市九上数学开学统考试题【含答案】_第1页
2025届浙江省丽水市九上数学开学统考试题【含答案】_第2页
2025届浙江省丽水市九上数学开学统考试题【含答案】_第3页
2025届浙江省丽水市九上数学开学统考试题【含答案】_第4页
2025届浙江省丽水市九上数学开学统考试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共9页2025届浙江省丽水市九上数学开学统考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在下列各式由左到右的变形中,不是因式分解的是()A. B.C. D.2、(4分)如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是()A.52 B.42 C.76 D.723、(4分)如图,表示A点的位置,正确的是()A.距O点3km的地方B.在O点的东北方向上C.在O点东偏北40°的方向D.在O点北偏东50°方向,距O点3km的地方4、(4分)为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均20平方厘米提高到24.2平方厘米,每年的增长率相同,设为x,则可列方程是()A.(1+x)2=24.2 B.20(1+x)2=24.2C.(1﹣x)2=24.2 D.20(1﹣x)2=24.25、(4分)已知一组数据1,l,,7,3,5,3,1的众数是1,则这组数据的中位数是().A.1 B.1.5 C.3 D.56、(4分)点A2,3关于原点的对称点的坐标是()A.2,3B.2,3C.2,3D.3,27、(4分)如图,若要用“”证明,则还需补充的条件是()A. B.或C.且 D.8、(4分)二次函数y=ax2+bx+c(a≠1)的图象如图所示,对称轴是直线x=1,下列结论:①ab<1;②b2>4ac;③a+b+c<1;④3a+c<1.其中正确的是()A.①④ B.②④ C.①②③ D.①②③④二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)求代数式的值是____________.10、(4分)如图,△ABC,∠A=90°,AB=AC.在△ABC内作正方形A1B1C1D1,使点A1,B1分别在两直角边AB,AC上,点C1,D1在斜边BC上,用同样的方法,在△C1B1B内作正方形A2B2C2D2;在△CB2C2内作正方形A3B3C3D3……,若AB=1,则正方形A2018B2018C2018D2018的边长为_____.11、(4分)某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为__分.12、(4分)在平面直角坐标系中,已知一次函数的图像经过,两点,若,则.(填”>”,”<”或”=”)13、(4分)甲、乙两名同学的5次射击训练成绩(单位:环)如下表.甲78988乙610978比较甲、乙这5次射击成绩的方差S甲1,S乙1,结果为:S甲1_____S乙1.(选填“>”“=”或“<“)三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平面直角标系中,△ABC的三个顶点坐标为A(-3,1)、B(-4,-3)、C(-1,-4),△ABC绕原点顺时针旋转180°,得到△A1B1C1再将△A1B1C1向左平移5个单位得到△A1B1C1.(1)画出△A1B1C1,并写出点A的对应点A1的坐标;(1)画出△A1B1C1,并写出点A的对应点A1的坐标;(3)P(a,b)是△ABC的边AC上一点,△ABC经旋转,平移后点P的对应点分别为P1、P1,请直接写出点P1的坐标.15、(8分)如图,正比例函数的图象与一次函数的图象交于点,一次函数图象经过点,与轴的交点为,与轴的交点为.(1)求一次函数解析式;(2)求点的坐标.16、(8分)如图,在矩形中,为对角线,点为边上一动点,连结,过点作,垂足为,连结.(1)证明:;(2)当点为的中点时,若,求的度数;(3)当点运动到与点重合时,延长交于点,若,则.17、(10分)如图1,在平画直角坐标系中,直线交轴于点,交轴于点,将直线沿轴向右平移2个单位长度交轴于,交轴于,交直线于.(1)直接写出直线的解析式为______,______.(2)在直线上存在点,使是的中线,求点的坐标;(3)如图2,在轴正半轴上存在点,使,求点的坐标.18、(10分)已知y是x的一次函数,当x=1时,y=1;当x=-2时,y=-14.(1)求这个一次函数的关系式;(2)在如图所示的平面直角坐标系中作出函数的图像;(3)由图像观察,当0≤x≤2时,函数y的取值范围.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离与时刻的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为________km.20、(4分)若解分式方程产生增根,则m=_____.21、(4分)如图,已知:在▱ABCD中,AB=AD=2,∠DAB=60°,F为AC上一点,E为AB中点,则EF+BF的最小值为.22、(4分)如果+=2012,-=1,那么=_________.23、(4分)已知:正方形,为平面内任意一点,连接,将线段绕点顺时针旋转得到,当点,,在一条直线时,若,,则________.二、解答题(本大题共3个小题,共30分)24、(8分)(1)如图,已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.(2)如图,用3个全等的菱形构成活动衣帽架,顶点A、E、F、C、G、H是上、下两排挂钩,根据需要可以改变挂钩之间的距离(比如AC两点可以自由上下活动),若菱形的边长为13厘米,要使两排挂钩之间的距离为24厘米,并在点B、M处固定,则B、M之间的距离是多少?25、(10分)如图,已知点E,F分别是平行四边形ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若AC=4,AB=5,求菱形AECF的面积.26、(12分)历下区某学校组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有,队伍8:00从学校出发。苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,结果同时到达基地.求大巴车与小车的平均速度各是多少?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是因式分解,故A不符合题意;B、是整式的乘法,故B符合题意;C、是因式分解,故C不符合题意;D、是因式分解,故D不符合题意;故选:B.本题考查了因式分解的意义.熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.2、C【解析】解:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得:x=1.故“数学风车”的周长是:(1+6)×4=2.故选C.3、D【解析】

用方向角和距离表示位置.【详解】如图,可用方向角和距离表示:A在O点北偏东50°方向,距O点3km的地方.故选D本题考核知识点:用方向角和距离表示位置.解题关键点:理解用方向角和距离表示位置的方法.4、B【解析】

如果设年增长率为x,则可以根据“住房面积由现在的人均约为10平方厘米提高到14.1平方厘米”作为相等关系得到方程10(1+x)1=14.1.【详解】解:设每年的增长率为x,根据题意得10(1+x)1=14.1,故选:B.本题考查列一元二次方程,解题的关键是读懂题意,由题意得到等式10(1+x)1=14.1.5、B【解析】

数据1,1,x,7,3,2,3,1的众数是1,说明1出现的次数最多,所以当x=1时,1出现3次,次数最多,是众数;再把这组数据从小到大排列:1,1,1,1,3,3,2,7,处于中间位置的数是1和3,所以中位数是:(1+3)÷1=1.2.故选B.6、C【解析】

根据直角坐标系中两个关于原点的对称点的坐标特点:“关于原点对称的点,横坐标、纵坐标都互为相反数”进行解答.【详解】由直角坐标系中关于原点对称的点的坐标特点:横坐标、纵坐标都互为相反数,可得点P(2,−3)关于坐标原点的对称点的坐标为(−2,3),故答案为:C.本题考查了直角坐标系中关于原点对称的两点的坐标特征,牢牢掌握其坐标特征是解答本题的关键点.7、B【解析】

根据题意可知只要再有一条直角边对应相等即可通过“HL”证明三角形全等.【详解】解:已知△ABC与△ABD均为直角三角形,AB=AB,若或,则(HL).故选B.本题主要考查全等三角形的特殊判定,解此题的关键在于熟练掌握其知识点.8、C【解析】

解:∵抛物线开口向上,∴∵抛物线的对称轴为直线∴∴所以①正确;∵抛物线与x轴有2个交点,∴所以②正确;∵x=1时,∴所以③正确;∵抛物线的对称轴为直线∴而时,即∴即所以④错误.故选C.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

先算乘方,再通分,最后化简即可.【详解】解:原式=-+c+1==

=1,

故答案为:1.本题考查了二次根式的混合运算,熟练掌握运算顺序和运算法则是解题关键.10、13×(23)【解析】

已知正方形A1B1C1D1的边长为13,然后得到正方形A2B2C2D2的边长为,然后得到规律,即可求解.【详解】解:∵正方形A1B1C1D1的边长为13正方形A2B2C2D2的边长为1正方形A3B3C3D3的边长为13…,正方形A2018B2018C2018D2018的边长为13故答案为13本题考查了等腰直角三角形的性质和正方形的性质,解题关键是灵活应用等腰直角三角形三边的关系进行几何计算.11、87.1.【解析】

根据加权平均数的含义和求法,可求出甲的平均成绩.【详解】面试和笔试的成绩分别为81分和90分,面试成绩和笔试成绩的权分别是1和4,甲的平均成绩为:(分).故答案为:87.1.考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键.12、.【解析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.13、<【解析】

首先求出各组数据的平均数,再利用方差公式计算得出答案.【详解】,,,,则﹤.故答案为:﹤.此题主要考查了方差,正确掌握方差计算公式是解题关键.三、解答题(本大题共5个小题,共48分)14、(1)如图,△A1B1C1为所作,见解析;点A的对应点A1的坐标为(3,1);(1)如图,△A1B1C1为所作,见解析;点A的对应点A1的坐标为(-1,1);(3)P1的坐标为(-a-5,-b).【解析】

(1)根据题意,分别找出点A、B、C关于原点的对称点A1、B1、C1,然后连接A1B1、A1C1、B1C1即可,然后根据关于原点对称的两点坐标关系:横纵坐标均互为相反数即可得出结论;(1)分别将点A1、B1、C1向左平移5个单位得到A1、B1、C1,然后连接A1B1、A1C1、B1C1即可,然后根据点的坐标平移规律:横坐标左减右加,纵坐标上加下减,即可得出结论;(3)先根据关于原点对称的两点坐标关系:横纵坐标均互为相反数即可求出P1的坐标,然后根据点的坐标平移规律:横坐标左减右加,纵坐标上加下减,即可求出P1的坐标【详解】(1)分别找出点A、B、C关于原点的对称点A1、B1、C1,然后连接A1B1、A1C1、B1C1,如图,△A1B1C1为所作,点A的对应点A1的坐标为(3,1);(1)分别将点A1、B1、C1向左平移5个单位得到A1、B1、C1,然后连接A1B1、A1C1、B1C1,如图,△A1B1C1为所作,点A的对应点A1的坐标为(-1,1);(3)P(a,b)经过旋转得到的对应点P1的坐标为(-a,-b),把P1平移得到对应点P1的坐标为(-a-5,-b).此题考查的是画关于原点对称的图形、画图形的平移、求关于原点对称的点的坐标和点平移后的坐标,掌握关于原点对称的图形的画法、图形平移的画法、关于原点对称的两点坐标关系和点的坐标平移规律是解决此题的关键.15、(1);(2)点的坐标为【解析】

(1)将代入中即可求解;(2)联立两函数即可求解.【详解】解:(1)将代入中,得:,∴(2)联立,得∴点的坐标为此题主要考查一次函数的图像,解题的关键是熟知待定系数法确定函数关系式.16、(1)见解析;(2)53°;(3)【解析】

(1)根据两角对应相等的两个三角形相似即可判断.(2)只要证明△CPQ∽△APC,可得∠PQC=∠ACP即可解决问题.(3)连接AF.与Rt△ADF≌Rt△AQF(HL),推出DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,证明△BCQ∽△CFQ,可得,推出,即,由CF∥AB,可得,推出,可得,推出x2+xy-y2=0,解得x=y或(舍弃),由此即可解决问题.【详解】(1)证明:∵四边形ABCD是矩形,∴∠ABP=90°,∵BQ⊥AP,∴∠BQP=∠ABP=90°,∵∠BPQ=∠APB,∴△ABP∽△BQP.(2)解:∵△ABP∽△BQP,∴∴PB2=PQ•PA,∵PB=PC,∴PC2=PQ•PA,∴∵∠CPQ=∠APC,∴△CPQ∽△APC,∴∠PQC=∠ACP,∵∠BAC=37°,∴∠ACB=90°-37°=53°,∴∠CQP=53°.(3)解:连接AF.∵∠D=∠AQF=90°,AF=AF,AD=AQ,∴Rt△ADF≌Rt△AQF(HL),∴DF=QF,设AD=AQ=BC=m,DF=FQ=x,FC=y,CQ=a,∵∠BCF=∠CQB=∠CQF=90°,∴∠BCQ+∠FCQ=90°,∠CBQ=90°,∴∠FCQ=∠CBQ,∴△BCQ∽△CFQ,∴,∴∴,∵CF∥AB,∴,∴∴∴x2+xy-y2=0,∴x=y或(舍弃),∴∴.故答案为:.本题属于相似形综合题,考查了矩形的性质,相似三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.17、(1),22;(2);(3)【解析】

(1)根据平移规律“上加下减、左加右减”进行计算可得到平移后的解析式,再分别求出A,B,C的坐标,即可计算出22;(2)作轴于,轴于,易得,则,再将x=4代入得到y=11,所以;(3)在轴正半轴上取一点,使,由外角性质和等腰三角形的性质得出,再用勾股定理求得OP的长,即可得出答案.【详解】解:(1)直线沿x轴向右平移2个单位长度,则y=-2(x-2)-7=-2x-3将和联立,得解得易得故答案为:,22;(2)作轴于,轴于,∵∴,,∵为的中线,∴,∵,∴,∴,在中,当时,,∴.(3)由(1)得,,∴,,在轴正半轴上取一点,使,∵,∴,∴,∵,∴,∴,在中,由勾股定理可得:,∴.本题考查了一次函数和几何的综合,熟练掌握一次函数的图象和性质是解题关键.18、(1)y=5x-4;(2)详见解析;(3)-4≤y≤1.【解析】

(1)设函数解析式y=kx+b,将题中的两个条件代入即可得出解析式;(2)根据题意可确定函数上的两个点(1,1)、(-2,-14),运用两点法即可确定函数图象.(3)根据图象可知,当0≤x≤2时,y的取值范围是-4≤x≤1.【详解】解:(1)设函数的关系式为y=kx+b,则由题意,得解得,∴一次函数的关系式为y=5x-4;(2)所作图形如图.(3)∵0≤x≤2,∴y的取值范围是:-4≤y≤1.故答案为:(1)y=5x-4;(2)图形见解析;(3)-4≤y≤1.本题考查待定系数法求函数解析式及一次函数图象上点的坐标特征,难度不大,注意掌握一次函数的性质.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;计算出乙车的平均速度为:300÷(9-6)=100(km/h),当乙车7:30时,乙车离A的距离为:100×1.5=150(km),得到点A(7.5,150)点B(5,0),设甲的函数解析式为:y=kt+b,把点A(7.5,150),B(5,0)代入解析式,求出甲的解析式,当t=9时,y=1×9-300=240,所以9点时,甲距离开A的距离为240km,则当乙车到达B城时,甲车离B城的距离为:300-240=1km.【详解】解:由图示知:A,B两城相距300km,甲车从5:00出发,乙车从6:00出发;甲车10:00到达B城,乙车9:00到达B城;

乙车的平均速度为:300÷(9-6)=100(km/h),

当乙车7:30时,乙车离A的距离为:100×1.5=150(km),

∴点A(7.5,150),

由图可知点B(5,0),

设甲的函数解析式为:y=kt+b,

把点A(7.5,150),B(5,0)代入y=kt+b得:,解得:,∴甲的函数解析式为:y=1t-300,

当t=9时,y=1×9-300=240,

∴9点时,甲距离开A的距离为240km,

∴则当乙车到达B城时,甲车离B城的距离为:300-240=1km.

故答案为:1.

本题考查了一次函数的应用,解决本题的关键是求甲的函数解析式,即可解答.20、-5【解析】

试题分析:根据分式方程增根的产生的条件,可知x+4=0,解得x=-4,然后把分式方程化为整式方程x-1=m,解得m=-5故答案为-5.21、.【解析】试题分析:首先菱形的性质可知点B与点D关于AC对称,从而可知BF=DF,则EF+BF=EF+DF,当点D、F、E共线时,EF+BF有最小值.解:∵▱ABCD中,AB=AD,∴四边形ABCD为菱形.∴点D与点B关于AC对称.∴BF=DF.连接DE.∵E是AB的中点,∴AE=1.∴=又∵∠DAB=60°,∴cos∠DAE=.∴△ADE为直角三角形.∴DE===,故答案为:.【点评】本题主要考查的是最短路径、平行四边形的性质以及菱形的性质和判定,由轴对称图形的性质将EF+FB的最小值转化为DF+EF的最小值是解题的关键.22、1.【解析】

根据平方差公式进行因式分解,然后代入数值计算即可.【详解】解:∵m+n=1,m-n=1,

∴=(m+n)(m-n)=1×1=1.故答案为:1.本题考查因式分解的应用,利用平方差公式分解因式,熟记平方差公式的结构特点是解题的关键.23、或【解析】

分两种情况讨论:(1)当点G在线段BD上时,如下图连接EG交CD于F;(2)当点G在线段BD的延长线上时,如下图连接EG交CD的延长线于F.根据两种情况分别画出图形,证得是等腰直角三角形,求出DF=EF=2,然后在直角三角形ECF中利用勾股定理即可求出CE的长.【详解】解:分两种情况讨论:(1)当点G在线段BD上时,如下图连接EG交CD于F∵ABCD是正方形∴CD=AD=4∵线段绕点顺时针旋转得到∴是等腰直角三角形,DE=DG=∴DF=EF=2∴CF=CD-DF=4-2=2∴CE=(2)当点G在线段BD的延长线上时,如下图连接EG交CD的延长线于F∵ABCD是正方形∴CD=AD=4∵线段绕点顺时针旋转得到∴是等腰直角三角形,DE=DG=∴DF=EF=2∴CF=CD+DF=4+2=6∴CE=综上所述,CE的长为或本题考查了正方形的性质、旋转的性质及等腰直角三角形的性质,通过旋转证得是等腰直角三角形进行有关的计算是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)AB=10,CD=4.8;(2)BM=30厘米.【解析】

(1)在直角三角形ABC中,利用勾股定理求出AB的长,再利用面积法求出CD的长即可.(2)连接AC,BD交于点O,根据四边形ABCD是菱形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论