




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2025届上海市同济大附属存志学校九上数学开学综合测试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,已知直线y=x与双曲线y=(k>0)交于A,B两点,且点A的横坐标为4.点C是双曲线上一点,且纵坐标为8,则△AOC的面积为()A.8 B.32 C.10 D.152、(4分)已知一次函数,随着的增大而增大,则的取值范围是()A. B. C. D.3、(4分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于()A.2﹣ B.1 C. D.﹣l4、(4分)如图,□ABCD中,AE平分∠DAB,∠B=100°则∠DAE等于()A.40° B.60° C.80° D.100°5、(4分)如图所示,在菱形ABCD中,已知两条对角线AC=24,BD=10,则此菱形的边长是()A.11 B.13 C.15 D.176、(4分)在平面直角坐标系中,点M(﹣2,1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7、(4分)在下列各式中①;②;③;④,是一元二次方程的共有()A.0个 B.1个 C.2个 D.3个8、(4分)一元二次方程根的情况是A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)对于分式,当x______时,分式无意义;当x______时,分式的值为1.10、(4分)在平面直角坐标系中,已知点在第二象限,那么点在第_________象限.11、(4分)若+(x-y+3)2=0,则(x+y)2018=__________.12、(4分)如图,矩形的面积为,平分,交于,沿将折叠,点的对应点刚好落在矩形两条对角线的交点处.则的面积为________.13、(4分)不等式2x-1>5的解集为.三、解答题(本大题共5个小题,共48分)14、(12分)已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b-<0的解集(直接写出答案).15、(8分)某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.(1)当x≥200时,求y与x之间的函数关系式(2)若小刚家10月份上网180小时,则他家应付多少元上网费?(3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?16、(8分)某校在一次广播操比赛中,初二(1)班、初二(2)班、初二(3)班的各项得分如下:服装统一动作整齐动作准确初二(1)班初二(2)班初二(3)班(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班.(2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为,那么这三个班的排名顺序怎样?为什么?(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?17、(10分)已知直线y=﹣3x+6与x轴交于A点,与y轴交于B点.(1)求A,B两点的坐标;(2)求直线y=﹣3x+6与坐标轴围成的三角形的面积.18、(10分)如图,是矩形对角线的交点,,.(1)求证:四边形是菱形;(2)若,,求矩形的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在数轴上点A表示的实数是_____________.20、(4分)如图,某河堤的横断面是梯形ABCD,BC∥AD,已知背水坡CD的坡度i=1:2.4,CD长为13米,则河堤的高BE为米.21、(4分)若,则y_______(填“是”或“不是”)x的函数.22、(4分)在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.23、(4分)如图,在四边形ABCD中,已知AB=CD,再添加一个条件_______(写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)二、解答题(本大题共3个小题,共30分)24、(8分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1)求证:四边形EGFH是平行四边形;(2)当EG=EH时,连接AF①求证:AF=FC;②若DC=8,AD=4,求AE的长.25、(10分)在矩形ABCD中,AB=12,BC=25,P是线段AB上一点(点P不与A,B重合),将△PBC沿直线PC折叠,顶点B的对应点是点G,CG,PG分别交线段AD于E,O.(1)如图1,若OP=OE,求证:AE=PB;(2)如图2,连接BE交PC于点F,若BE⊥CG.①求证:四边形BFGP是菱形;②当AE=9,求的值.26、(12分)已知二次函数的最大值为4,且该抛物线与轴的交点为,顶点为.(1)求该二次函数的解析式及点,的坐标;(2)点是轴上的动点,①求的最大值及对应的点的坐标;②设是轴上的动点,若线段与函数的图像只有一个公共点,求的取值范围.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】点A的横坐标为4,将x=4代入y=x,得y=2.∴点A的坐标为(4,2).∵点A是直线y=x与双曲线y=(k>0)的交点,∴k=4×2=8,即y=.将y=8代入y=中,得x=1.∴点C的坐标为(1,8).如图,过点A作x轴的垂线,过点C作y轴的垂线,垂足分别为M,N,且AM,CN的反向延长线交于点D,得长方形DMON.易得S长方形DMON=32,S△ONC=4,S△CDA=9,S△OAM=4.∴S△AOC=S长方形DMON-S△ONC-S△CDA-S△OAM=32-4-9-4=15.2、A【解析】
根据自变量系数大于零列不等式求解即可.【详解】由题意得a-2>0,∴a>2.故选A.本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.3、D【解析】∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴DC′=AC′-AD=-1,∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×(-1)2=-1,故选D.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.4、A【解析】分析:由平行四边形的性质得出AD∥BC,得出∠DAB=180°-100°=80°,由角平分线的定义得出∠DAE=∠DAB=40°即可.详解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAD+∠B=180°,∴∠DAB=180°−100°=80°,∵AE平分∠DAB,∴∠DAE=∠DAB=40°;点睛:本题主要考查了平行四边形的性质,关键在于理解平行四边形的对边互相平行.5、B【解析】
由菱形的性质可得AO=12AC=12,BO=12【详解】如图,∵四边形ABCD是菱形∴AC⊥BD,AO=12AC=12,BO=1∴AB=AO故选B.本题考查了菱形的性质,利用勾股定理求AB长是本题的关键.6、B【解析】∵点P的横坐标为负,纵坐标为正,∴该点在第二象限.故选B.7、B【解析】
根据一元二次方程的定义即可求解.【详解】由一元二次方程的定义可知①为一元二次方程,符合题意②不是方程,不符合题意③是分式方程,不符合题意④当a=0时,不是一元二次方程,不符合题意故选B.此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.8、C【解析】
由△=b2-4ac的情况进行分析.【详解】因为,△=b2-4ac=(-3)2-4×1×3=-3<0,所以,方程没有实数根.故选C本题考核知识点:根判别式.解题关键点:熟记一元二次方程根判别式.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
根据分母为零时,分式无意义;分子为零且分母不为零,分式的值为1,据此分别进行求解即可得.【详解】当分母x+2=1,即x=-2时,分式无意义;当分子x2-9=1且分母x+2≠1,即x=2时,分式的值为1,故答案为=-2,=2.本题考查了分式无意义的条件,分式的值为1的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(2)分式值为零⇔分子为零且分母不为零.10、三【解析】
根据在第二象限中,横坐标小于0,纵坐标大于0,所以-n<0,m<0,再根据每个象限的特点,得出点B在第三象限,即可解答.【详解】解:∵点A(m,n)在第二象限,
∴m<0,n>0,
∴-n<0,m<0,
∵点B(-n,m)在第三象限,
故答案为三.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).11、1【解析】分析:根据几个非负数的和为0时,这几个非负数都为0列出算式,求出x、y的值,计算即可.详解:由题意得:x+2=0,x﹣y+3=0,解得:x=﹣2,y=1,则(x+y)2018=(-2+1)2018=1.故答案为:1.点睛:本题考查了非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.12、【解析】
先证明△AEB≌△FEB≌△DEF,从而可知S△ABE=S△DAB,即可求得△ABE的面积.【详解】解:由折叠的性质可知:△AEB≌△FEB∴∠EFB=∠EAB=90°∵ABCD为矩形∴DF=FB∴EF垂直平分DB∴ED=EB在△DEF和△BEF中DF=BFEF=EFED=EB∴△DEF≌△BEF∴△AEB≌△FEB≌△DEF∴.故答案为1.本题主要考查的是折叠的性质、矩形的性质、线段垂直平分线的性质和判定、全等三角形的判定和性质,证得△AEB≌△FEB≌△DEF是解题的关键.13、x>1【解析】考点:解一元一次不等式.分析:先移项,再合并同类项,系数化为1即可.解:移项得,2x>5+1,合并同类项得,2x>6,系数化为1得,x>1.故答案为x>1.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.三、解答题(本大题共5个小题,共48分)14、(1)反比例函数关系式:;一次函数关系式:y=1x+1;(1)3;(3)x<-1或0<x<1.【解析】分析:(1)由B点在反比例函数y=上,可求出m,再由A点在函数图象上,由待定系数法求出函数解析式;(1)由上问求出的函数解析式联立方程求出A,B,C三点的坐标,从而求出△AOC的面积;(3)由图象观察函数y=的图象在一次函数y=kx+b图象的上方,对应的x的范围.详解:(1)∵B(1,4)在反比例函数y=上,∴m=4,又∵A(n,-1)在反比例函数y=的图象上,∴n=-1,又∵A(-1,-1),B(1,4)是一次函数y=kx+b的上的点,联立方程组解得,k=1,b=1,∴y=,y=1x+1;(1)过点A作AD⊥CD,∵一次函数y=kx+b的图象和反比例函数y=的图象的两个交点为A,B,联立方程组解得,A(-1,-1),B(1,4),C(0,1),∴AD=1,CO=1,∴△AOC的面积为:S=AD•CO=×1×1=1;(3)由图象知:当0<x<1和-1<x<0时函数y=的图象在一次函数y=kx+b图象的上方,∴不等式kx+b-<0的解集为:0<x<1或x<-1.点睛:此题考查一次函数和反比例函数的性质及图象,考查用待定系数法求函数的解析式,还间接考查函数的增减性,从而来解不等式.15、(1)y=x-260;(2)小刚家10月份上网180小时应交费40元;(3)他家该月的上网时间是208小时.【解析】
(1)用待定系数法求解;(2)根据函数图象求解;(3)(把y=52代入y=x-260中可得.【详解】(1)设当x≥200时,y与x之间的函数关系式为y=kx+b,∵图象经过(200,40)(220,70),∴,解得,∴此时函数表达式为y=x-260;(2)根据图象可得小刚家10月份上网180小时应交费40元;(3)把y=52代入y=x-260中得:x=208,答:他家该月的上网时间是208小时.考核知识点:一次函数的应用.数形结合分析问题是关键.16、(1)89分,78分,初二(1);(2)排名最好的是初二一班,最差的是初二(2)班,理由见解析;(3)见解析【解析】
(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作整齐的众数即可;
(2)利用加权平均数分别计算三个班的得分后即可排序;
(3)根据成绩提出提高成绩的合理意见即可;【详解】(1)服装统一方面的平均分为:=89分;
动作整齐方面的众数为78分;
动作准确方面最有优势的是初二(1)班;
(2)∵初二(1)班的平均分为:=84.7分;
初二(2)班的平均分为:=82.8分;
初二(3)班的平均分为:=83.9;
∴排名最好的是初二一班,最差的是初二(2)班;
(3)加强动作整齐方面的训练,才是提高成绩的基础.考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.17、(1)A(2,0),B(0,1);(2)1.【解析】试题分析:(1)分别令x=0、y=0求解即可得到与坐标轴的交点;(2)根据三角形的面积公式列式计算即可得解.解:(1)当x=0时,y=﹣3x+1=1,当y=0时,0=﹣3x+1,x=2.所以A(2,0),B(0,1);(2)直线与坐标轴围成的三角形的面积=S△ABO=×2×1=1.考点:一次函数图象上点的坐标特征.18、(1)见解析;(2)【解析】
(1)先证明四边形OCED是平行四边形,再证明OD=OC,根据一组邻边相等的平行四边形是菱形进行判定;
(2)结合题意,根据∠AOD=120°得到为等边三角形,推导出,再结合题意得到AC=6,利用勾股定理求出AD长,矩形面积=AD×CD.【详解】(1),,四边形是平行四边形.是矩形的对角线的交点,,平行四边形是菱形;(2),,为等边三角形,故.,,,,故矩形.本题考查平行四边形的性质和判定、菱形的性质和判定以及勾股定理,解题的关键是掌握平行四边形的性质和判定、菱形的性质和判定以及勾股定理.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
如图在直角三角形中的斜边长为,因为斜边长即为半径长,且OA为半径,所以OA=,即A表示的实数是.【详解】由题意得,OA=,∵点A在原点的左边,∴点A表示的实数是-.故答案为-.本题考查了勾股定理,实数与数轴的关系,根据勾股定理求出线段OA的长是解答本题的关键.20、1【解析】在Rt△ABE中,根据tan∠BAE的值,可得到BE、AE的比例关系,进而由勾股定理求得BE、AE的长,由此得解.解:作CF⊥AD于F点,则CF=BE,∵CD的坡度i=1:2.4=CF:FD,∴设CF=1x,则FD=12x,由题意得CF2+FD2=CD2即:(1x)2+(12x)2=132∴x=1,∴BE=CF=1故答案为1.本题主要考查的是锐角三角函数的定义和勾股定理的应用.21、不是【解析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应的关系,据此即可判断.【详解】对于x的值,y的对应值不唯一,故不是函数,故答案为:不是.本题是对函数定义的考查,熟练掌握函数的定义是解决本题的关键.22、二【解析】
根据各象限内点的坐标特征,可得答案.【详解】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).23、AD=BC(答案不唯一)【解析】
可再添加一个条件AD=BC,根据两组对边分别相等的四边形是平行四边形,得出四边形ABCD是平行四边形.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)①见解析,②1.【解析】
(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
(2)①由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF;
②设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.【详解】(1)∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,又∵CH=AG,∠FCH=∠EAG∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形;(2)①如图,连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF;②设AE=x,则FC=AF=x,DF=8-x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8-x)2=x2,解得x=1,∴AE=1.本题考查了矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键25、(1)见解析;(2)①见解析;②【解析】
(1)由折叠的性质可得PB=PG,∠B=∠G=90°,由“AAS”可证△AOP≌△GOE,可得OA=GO,即可得结论;(2)①由折叠的性质可得∠PGC=∠PBC=90°,∠BPC=∠GPC,BP=PG,BF=FG,由平行线的性质可得∠BPF=∠BFP=∠GPC,可得BP=BF,即可得结论;②由勾股定理可求BE的长,EC的长,由相似三角形的性质可得,可求BF=BP=5x=,由勾股定理可求PC的长,即可求解.【详解】证明:(1)∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC,∠A=∠B=90°∵将△PBC沿直线PC折叠,∴PB=PG,∠B=∠G=90°∵∠AOP=∠GOE,OP=OE,∠A=∠G=90°∴△AOP≌△GOE(AAS)∴AO=GO∴AO+OE=GO+OP∴AE=GP,∴AE=PB,(2)①∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,BP=PG,BF=FG∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF∴BP=BF=PG=GF∴四边形BFGP是菱形;②∵AE=9,CD=AB=12,AD=BC=GC=25,∴DE=AD-AE=16,BE==15,在Rt△DEC中,EC==20∵BE∥PG∴△CEF∽△CGP∴∴==∴设EF=4x,PG=5x,∴BF=BP=GF=5x,∵BF+EF=BE=15∴9x=15∴x=∴BF=BP=5x=,在Rt△BPC中,PC==∴==本题是相似形综合题,考查了折叠的性质,相似三角形的判定和性质,全等三角形的判定和性质,矩形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- TD/T 1005-2003农用地定级规程
- 2025年中考语文一模试卷-15
- 考研复习-风景园林基础考研试题【综合卷】附答案详解
- 风景园林基础考研资料试题及答案详解【必刷】
- 《风景园林招投标与概预算》试题A附参考答案详解【培优】
- 2025-2026年高校教师资格证之《高等教育法规》通关题库带答案详解(综合卷)
- 2025年黑龙江省五常市辅警招聘考试试题题库及答案详解(典优)
- 2025年Z世代消费趋势下新消费品牌供应链优化策略报告
- 中石化数质量管理
- 机械通气患者的日常监测与评估2025
- 湖北省武汉市2025届高三年级五月模拟训练试题数学试题及答案(武汉五调)
- 2025年湖北省襄阳市襄州区中考数学二模试卷
- 2024年浙江省单独考试招生文化考试语文试卷真题(含答案详解)
- 《汽车电工电子基础》课程标准
- 诺和诺德制药
- 长三角地区地图(可以随意更改颜色、转动、组合))
- UB-7PH计操作规程
- SIDEL吹瓶机原理ppt课件
- 公司解散清算专项法律服务工作方案
- 转发省局《关于加强非煤矿山安全生产班组建设的指导意见》的通知
- 第四节SS4改型电力机车常见故障处理
评论
0/150
提交评论