版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届山东省青州市九年级数学第一学期开学联考模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,兔子的三个洞口A、B、C构成△ABC,猎狗想捕捉兔子,必须到三个洞口的距离都相等,则猎狗应蹲守在()A.三条边的垂直平分线的交点 B.三个角的角平分线的交点C.三角形三条高的交点 D.三角形三条中线的交点2、(4分)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选().
甲
乙
平均数
9
8
方差
1
1
A.甲 B.乙 C.丙 D.丁3、(4分)若a>b,则下列式子正确的是()A.a﹣4>b﹣3 B.a<b C.3+2a>3+2b D.﹣3a>﹣3b4、(4分)如图,将等边△ABC沿直线BC平移到△DEF,使点E与点C重合,连接BD,若AB=2,则BD的长为()A.23 B.3 C.3 D.255、(4分)如图,在ΔABC中,分别以点A,C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD.若AB=3,BC=4,则ΔABDA.7 B.8 C.9 D.106、(4分)下列计算错误的是()A. B. C. D.7、(4分)若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:A. B. C. D.8、(4分)如图,在□ABCD中,AB⊥AC,若AB=4,AC=6,则BD的长是()A.11 B.10 C.9 D.8二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将直线y=3x﹣1向上平移1个单位长度,得到的一次函数解析式为_____.10、(4分)如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件_________(只添一个即可),使四边形ABCD是平行四边形.11、(4分)甲,乙,丙三位同学近次快速阅读模拟比赛成绩平均分均为分,且甲,乙,丙的方差是,则发挥最稳定的同学是__________.12、(4分)等边三角形的边长是4,则高AD_________(结果精确到0.1)13、(4分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.三、解答题(本大题共5个小题,共48分)14、(12分)已知(如图),点分别在边上,且四边形是菱形(1)请使用直尺与圆规,分别确定点的具体位置(不写作法,保留画图痕迹);(2)如果,点在边上,且满足,求四边形的面积;(3)当时,求的值。15、(8分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.16、(8分)解方程:x(x﹣3)=1.17、(10分)第一个不透明的布袋中装有除颜色外均相同的7个黑球、5个白球和若干个红球每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定在0.4,估计袋中红球的个数.18、(10分)我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.特例感知:(1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;①当△ABC是一个等边三角形时,AF与BC的数量关系是:;②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是;猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.拓展应用:(3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)对于任意不相等的两个正实数a,b,定义运算如下:如,如,那么________.20、(4分)八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).21、(4分)当x=4时,二次根式的值为______.22、(4分)若关于x的分式方程有增根,则m的值为_______.23、(4分)计算:________________.二、解答题(本大题共3个小题,共30分)24、(8分)以△ABC的三边在BC同侧分别作三个等边三角形△ABD,△BCE,△ACF,试回答下列问题:(1)四边形ADEF是什么四边形?请证明:(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,四边形ADEF是菱形?(4)当△ABC满足什么条件时,能否构成正方形?(5)当△ABC满足什么条件时,无法构成四边形?25、(10分)如图,在□ABCD中,点E,F分别在边AB,DC上,且AE=CF,连接DE,BF.求证:DE=BF.26、(12分)已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为、,点D是OA的中点,点P在BC边上运动,当是等腰三角形时,点Р的坐标为_______________.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
根据题意,知猎狗应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【详解】解:猎狗到△ABC三个顶点的距离相等,则猎狗应蹲守在△ABC的三条(边垂直平分线)的交点.
故选:A.此题考查了线段垂直平分线的性质,以及三角形的角平分线、中线和高,熟练掌握性质是解本题的关键.2、C【解析】
试题分析:丙的平均数==9,丙的方差=[1+1+1=1]=0.4,乙的平均数==8.2,由题意可知,丙的成绩最好,故选C.考点:1、方差;2、折线统计图;3、加权平均数3、C【解析】
根据不等式的性质将a>b按照A、B、C、D四个选项的形式来变形看他们是否成立.【详解】解:A、a>b⇒a﹣4>b﹣4或者a﹣3>b﹣3,故A选项错误;B、a>b⇒a>b,故B选项错误;C、a>b⇒2a>2b⇒3+2a>3+2b,故C选项正确;D、a>b⇒﹣3a<﹣3b,故D选项错误.故选C.考点:不等式的性质.4、A【解析】
利用平移的性质得出BC,CF、DF的长,得∠BDF=90°,∠DBF=30°,可得结论.【详解】解:由平移得:ΔABC≅ΔDEF,∵ΔABC是等边三角形,且AB=2,∴BC=EF=DF=2,∠DEF=60°,∴∠CBD=∠CDB=30°,∵∠CDF=60°,∴∠BDF=90°,RtΔBDF中,∴BD=23故选:A.此题主要考查了平移的性质以及等边三角形的性质,根据题意得出∠BDF=90°是解决问题的关键.5、A【解析】
利用基本作图得到MN垂直平分AC,如图,则DA=DC,然后利用等线段代换得到△ABD的周长=AB+BC.【详解】解:由作法得MN垂直平分AC,如图,
∴DA=DC,
∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=3+4=1.
故选:A.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.6、D【解析】
根据二次根式的运算法则分别计算,再作判断.【详解】A、,选项正确;B、,选项正确;C、,选项正确;D、,选项错误.故选:D.本题主要考查二次根式的运算,解题的关键是熟练地掌握二次根式的运算法则.7、B【解析】
由方程有两个不相等的实数根,可得,解得,即异号,当时,一次函数的图象过一三四象限,当时,一次函数的图象过一二四象限,故答案选B.8、B【解析】
利用平行四边形的性质可知AO=2,在Rt△ABO中利用勾股定理可得BO=5,则BD=2BO=1.【详解】解:∵四边形ABCD是平行四边形,∴BD=2BO,AO=OC=2.在Rt△ABO中,利用勾股定理可得:BO=3∴BD=2BO=1.故选:B.本题主要考查了平行四边形的性质、勾股定理.解题的技巧是平行四边形转化为三角形问题解决.二、填空题(本大题共5个小题,每小题4分,共20分)9、y=3x.【解析】
根据“上加、下减”的原则进行解答即可.【详解】由“上加、下减”的原则可知,将函数y=3x﹣1的图象向上平移1个单位所得函数的解析式为y=3x﹣1+1=3x.故答案为y=3x.本题考查的是一次函数的图象与几何变换,熟知“上加、下减”的原则是解答此题的关键.10、BO=DO.【解析】
解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.故答案为BO=DO.11、丙【解析】
方差反应了一组数据的波动情况,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定,据此进一步判断即可.【详解】∵,,,∴丙同学的方差最小,∴发挥最稳定的同学是丙,故答案为:丙.本题主要考查了方差的意义,熟练掌握相关概念是解题关键.12、3.1【解析】
根据等边三角形的性质及勾股定理进行计算即可.【详解】如图,三角形ABC为等边三角形,AD⊥BC,AB=4,∵三角形ABC为等边三角形,AD⊥BC,∴BD=CD=2,在中,.故答案为:3.1.本题考查等边三角形的性质和勾股定理,掌握“三线合一”的性质及勾股定理是解题关键.13、84或24【解析】分两种情况考虑:①当△ABC为锐角三角形时,如图1所示,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD+DC=9+5=14,则S△ABC=BC⋅AD=84;②当△ABC为钝角三角形时,如图2所示,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD−DC=9−5=4,则S△ABC=BC⋅AD=24.综上,△ABC的面积为24或84.故答案为24或84.点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)详见解析;(2);(3)【解析】
(1)作△ABC的角平分线AE,作线段AE的垂直平分线交AB于D,交AC于F,连接DE、EF,四边形ADEF即为所求;(2)由题意,当∠A=60°,AD=4时,△ADF,△EFD,△EMD都是等边三角形,边长为4,由此即可解决问题;(3)利用三角形的中位线定理即可解决问题.【详解】(1)D,E,F的位置如图所示.(2)由题意,当∠A=60°,AD=4时,△ADF,△EFD,△EMD都是等边三角形,边长为4,∴S四边形AFEM=3××42=12;(3)当AB=AC时,易知DE是△ABC的中位线,∴DE=AC∴=.本题考查菱形的判定和性质,复杂作图,等边三角形的性质,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15、见解析【解析】
(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得∠ABE=∠A;结合三角形外角的性质可得∠BEC的度数,再在Rt△BCE中结合含30°角的直角三角形的性质,即可证明第(1)问的结论;(2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到∠ABC=60°,至此不难判断△BCD的形状【详解】(1)证明:连结BE,如图.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE.(2)解:△BCD是等边三角形.理由如下:∵DE垂直平分AB,∴D为AB的中点.∵∠ACB=90°,∴CD=BD.又∵∠ABC=60°,∴△BCD是等边三角形.此题考查了线段垂直平分线的性质、30°角的直角三角形的性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30°角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边的一半是解(2)的关键,16、x2=2,x2=﹣2【解析】
把方程化成一般形式,用十字相乘法因式分解求出方程的根.【详解】解:x2﹣3x﹣2=0(x﹣2)(x+2)=0x﹣2=0或x+2=0∴x2=2,x2=﹣2.本题考查了一元二次方程的解法,根据题目特点,可以灵活选择合适的方法进行解答,使计算变得简单.17、估计袋中红球8个.【解析】
根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.【详解】解:由题意可得:摸到黑球和白球的频率之和为:,总的球数为:,红球有:(个.答:估计袋中红球8个.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.18、(1)AF=BC;a;(2)猜想:AF=BC,(3)【解析】
(1)①先判断出AD=AE=AB=AC,∠DAE=120°,进而判断出∠ADE=30°,再利用含30度角的直角三角形的性质即可得出结论;②先判断出△ABC≌△ADE,利用直角三角形的性质即可得出结论;(2)先判断出△AEG≌△ACB,得出EG=BC,再判断出DF=EF,即可得出结论;(3)先判断出四边形PHCD是矩形,进而判断出∠DPC=30°,再判断出PB=PC,进而求出∠APB=150°,即可利用“夹补三角形”即可得出结论.【详解】解:(1)∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,①∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=60°∴AD=AE=AB=AC,∠DAE=120°,∴∠ADE=30°,∵AF是“夹补中线”,∴DF=EF,∴AF⊥DE,在Rt△ADF中,AF=AD=AB=BC,故答案为:AF=BC;②当△ABC是直角三角形时,∠BAC=90°,∵∠DAE=90°=∠BAC,易证,△ABC≌△ADE,∴DE=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=DE=BC=a,故答案为a;(2)解:猜想:AF=BC,理由:如图1,延长DA到G,使AG=AD,连EG∵△ABC与△ADE是一对“夹补三角形”,∴AB=AD,AC=AE,∠BAC+∠DAE=180°,∴AG=AB,∠EAG=∠BAC,AE=AC,∴△AEG≌△ACB,∴EG=BC,∵AF是“夹补中线”,∴DF=EF,∴AF=EG,∴AF=BC;(3)证明:如图4,∵△PAD是等边三角形,∴DP=AD=3,∠ADP=∠APD=60°,∵∠ADC=150°,∴∠PDC=90°,作PH⊥BC于H,∵∠BCD=90°∴四边形PHCD是矩形,∴CH=PD=3,∴BH=6﹣3=3=CH,∴PC=PB,在Rt△PCD中,tan∠DPC=,∴∠DPC=30°∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,∴∠APB+∠CPD=180°,∵DP=AP,PC=PB,∴△PCD是△PBA的“夹补三角形”,由(2)知,CD=,∴△PAB的“夹补中线”=.此题是四边形综合题,主要考查了全等三角形的判定和性质,含30度角的直角三角形的性质,锐角三角函数,新定义的理解和掌握,理解新定义是解本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
根据题目所给定义求解即可.【详解】解:因为,所以.本题考查了二次根式的运算,属于新定义题型,正确理解题中所给定义并进行应用是解题的关键.20、随机【解析】
根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答【详解】从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件此题考查随机事件,难度不大21、0【解析】
直接将,代入二次根式解答即可.【详解】解:把x=4代入二次根式=0,故答案为:0此题主要考查了二次根式的定义,直接将代入求出,利用二次根式的性质直接开平方是解决问题的关键.22、1【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母,得到,然后代入化为整式方程的方程算出m的值.【详解】解:方程两边都乘,得∵原方程有增根,∴最简公分母,解得,当时,故m的值是1,故答案为1本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.23、【解析】
二次根式相乘时,根号不变,直接把根号里面的数相乘,最后化简.二次根式相加减时,只有同类的二次根式才能相加减,根号部分不变,把整数部分相加减.【详解】原式=故答案为本题考察了二次根式的乘法和减法,这里需要注意的是,无论加减乘除,最后都要化为最简二次根式.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)当△ABC中的∠BAC=150°时,四边形ADEF是矩形;(3)当△ABC中的AB=AC时,四边形ADEF是菱形;(4)当∠BAC=150°且AB=AC时,四边形ADEF是正方形;(5)当∠BAC=60°时,D、A、F为同一直线,与E点构不成四边形,即以A、D、E、F为顶点的四边形不存在.【解析】
(1)通过证明△DBE≌△ABC,得到DE=AC,利用等边三角形ACF,可得DE=AF,同理证明与全等,利用等边三角形,得AD=EF,可得答案.(2)利用平行四边形ADEF是矩形,结合已知条件等边三角形得到即可.(3)利用平行四边形ADEF是菱形形,结合已知条件等边三角形得到即可.(4)结合(2)(3)问可得答案.(5)当四边形ADEF不存在时,即出现三个顶点在一条直线上,因此可得答案。【详解】解:(1)∵△BCE、△ABD是等边三角形,∴∠DBA=∠EBC=60°,AB=BD,BE=BC,∴∠DBE=∠ABC,∴△DBE≌△ABC,∴DE=AC,又△ACF是等边三角形,∴AC=AF,∴DE=AF,同理可证:AD=EF,∴四边形ADEF是平行四边形.(2)假设四边形ADEF是矩形,则∠DAF=90°,又∠DAB=∠FAC=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GH/T 1430-2023农民专业合作社信用信息数据元
- 《汽车结构认识》课件
- 单位管理制度合并选集【职员管理】十篇
- 单位管理制度范例选集职工管理十篇
- 单位管理制度呈现合集职工管理十篇
- 单位管理制度呈现大合集员工管理
- 《店铺运营管理》课件
- 《生药分析1》课程实施大纲
- 某科技园物业管理方案
- 2024年供电公司安全稽查总结
- 《皮肤病中成药导引》课件
- 2024-2030年中国除颤仪行业市场分析报告
- 2024年山东省公务员录用考试《行测》真题及答案解析
- 眼镜学智慧树知到答案2024年温州医科大学
- 推荐-挖掘机检验报告精品
- 排洪沟工程设计说明
- 23、PFMEA检查表
- CSX购倂Conrail之后能够产生的综效(synergy)列示
- 煤矿机电事故影响考核管理办法
- 三段式电流保护课程设计
- 施工电梯基础(地下室顶板加固图文并茂)施工方案
评论
0/150
提交评论