2025届山东省聊城市数学九上开学质量检测模拟试题【含答案】_第1页
2025届山东省聊城市数学九上开学质量检测模拟试题【含答案】_第2页
2025届山东省聊城市数学九上开学质量检测模拟试题【含答案】_第3页
2025届山东省聊城市数学九上开学质量检测模拟试题【含答案】_第4页
2025届山东省聊城市数学九上开学质量检测模拟试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2025届山东省聊城市数学九上开学质量检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)(2013年四川绵阳3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=【】A.cmB.cmC.cmD.cm2、(4分)一次函数与的图象如图所示,有下列结论:①;②;③当时,其中正确的结论有()A.个 B.个 C.个 D.个3、(4分)已知点在第二象限,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4、(4分)反比例函数的图象的一支在第二象限,则的取值范围是()A. B. C. D.5、(4分)在下列交通标志中,是中心对称图形的是()A. B.C. D.6、(4分)若,则化简后为()A. B. C. D.7、(4分)函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象可能是()A. B. C. D.8、(4分)计算:()A.5 B.7 C.-5 D.-7二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一个反比例函数(k≠0)的图象经过点P(-2,-1),则该反比例函数的解析式是________.10、(4分)若数使关于的不等式组有且只有四个整数解,的取值范围是__________.11、(4分)因式分解:_________.12、(4分)将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.13、(4分)当x______时,分式有意义.三、解答题(本大题共5个小题,共48分)14、(12分)如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.15、(8分)某书店老板去图书批发市场购买某种图书,第一次用500元购书若干本,很快售完由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用900元所购该书的数量比第一次的数量多了10本.(1)求第一次购书每本多少元?(2)如果这两次所购图书的售价相同,且全部售完后总利润不低于25%,那么每本图书的售价至少是多少元?16、(8分)在平面直角坐标系中,一次函数的图象经过点.(1)当时,且正比例函数的图象经过点.①若,求的取值范围;②若一次函数的图象为,且不能围成三角形,求的值;(2)若直线与轴交于点,且,求的数量关系.17、(10分)将矩形ABCD折叠使点A,C重合,折痕交BC于点E,交AD于点F,可以得到四边形AECF是一个菱形,若AB=4,BC=8,求菱形AECF的面积.18、(10分)在平面直角坐标系中,直线分别交轴,轴于点.(1)当,自变量的取值范围是(直接写出结果);(2)点在直线上.①直接写出的值为;②过点作交轴于点,求直线的解析式.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是_____.20、(4分)对于函数y=(m﹣2)x+1,若y随x的增大而增大,则m的取值范围_____.21、(4分)如图,直线AB与反比例函数的图象交于点A(u,p)和点B(v,q),与x轴交于点C,已知∠ACO=45°,若<u<2,则v的取值范围是__________.22、(4分)如图,在四边形中,,,,,且,则______度.23、(4分)若关于的一次函数(为常数)中,随的增大而减小,则的取值范围是____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB(1)求证:四边形EFCD是菱形;(2)设CD=2,求D、F两点间的距离.25、(10分)为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生有多少人?并补全条形统计图;(2)每天户外活动时间的中位数是小时?(3)该校共有1850名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?26、(12分)如图,在△ABC中,点D、E、F分别是边AB、AC、BC的中点,且BC=2AF。(1)求证:四边形ADEF为矩形;(2)若∠C=30°、AF=2,写出矩形ADEF的周长。

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B。【解析】∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm。,在Rt△AOB中,,∵BD×AC=AB×DH,∴DH=cm。在Rt△DHB中,,AH=AB﹣BH=cm。∵,∴GH=AH=cm。故选B。考点:菱形的性质,勾股定理,锐角三角函数定义。2、B【解析】

利用一次函数的性质分别判断后即可确定正确的选项.【详解】解:①∵的图象与y轴的交点在负半轴上,∴a<0,故①错误;②∵的图象从左向右呈下降趋势,∴k<0,故②错误;③两函数图象的交点横坐标为4,当x<4时,在的图象的上方,即y1>y2,故③正确;故选:B.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标.利用数形结合是解题的关键.3、D【解析】

依据A(a,﹣b)在第二象限,可得a<0,b<0,进而得到1﹣a>0,2b<0,即可得出点B(1﹣a,2b)在第四象限.【详解】∵A(a,﹣b)在第二象限,∴a<0,b<0,∴1﹣a>0,2b<0,∴点B(1﹣a,2b)在第四象限.故选D.本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4、A【解析】分析:当比例系数小于零时,反比例函数的图像经过二、四象限,由此得到k-1<0,解这个方程求出k的取值范围.详解:由题意得,k-1<0,解之得k<1.故选A.点睛:本题考查了反比例函数的图像,对于反比例函数,当k>0,反比例函数图象的两个分支在第一、三象限;当k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内.5、C【解析】

解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C6、A【解析】

二次根式有意义,隐含条件y>0,又xy<0,可知x<0,根据二次根式的性质化简.解答【详解】有意义,则y>0,∵xy<0,∴x<0,∴原式=.故选A此题考查二次根式的性质与化简,解题关键在于掌握其定义7、D【解析】【分析】分两种情况分析:当k>0或当k<0时.【详解】当k>0时,直线经过第一、二、三象限,双曲线在第一、三象限;当k<0时,直线经过第二、三、四象限,双曲线在第二、四象限.故选:D【点睛】本题考核知识点:一次函数和反比例函数的图象.解题关键点:理解两种函数的性质.8、A【解析】

先利用二次根式的性质进行化简,然后再进行减法运算即可.【详解】=6-1=5,故选A.本题考查了二次根式的化简,熟练掌握是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】把(-2,-1)代入,得,k=-1×(-2)=2,∴解析式为.10、【解析】

此题可先根据一元一次不等式组解出x的取值,再根据不等式组恰好只有四个整数解,求出实数a的取值范围.【详解】解不等式①得,x<5,解不等式②得,x≥2+2a,由上可得2+2a≤x<5,∵不等式组恰好只有四个整数解,即1,2,3,4;∴0<2+2a≤1,解得,.此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的取值范围,然后根据不等式组恰好只有四个整数解即可解出a的取值范围.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11、【解析】

直接提取公因式即可.【详解】.故答案为:.本题考查了因式分解——提取公因式法,掌握知识点是解题关键.12、y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.13、≠【解析】试题分析:分式有意义的条件:分式的分母不为0时,分式才有意义.由题意得,.考点:分式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握分式有意义的条件,即可完成.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)AB=AD(或AC⊥BD答案不唯一).【解析】试题分析:(1)根据平行四边形对角线互相平分可得OA=OC,OB=OD,根据等角对等边可得OB=OC,然后求出AC=BD,再根据对角线相等的平行四边形是矩形证明;(2)根据正方形的判定方法添加即可.试题解析:解:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四边形ABCD是矩形;(2)AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或:∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形.15、(1)第一次购书每本25元;(2)每本图书的售价至少是1元.【解析】

(1)设第一次购书的进价是x元/本,则第二批每套的进价是(1+20%)x元/本,然后根据题意列出分式方程即可得出结论;(2)设每本图书的售价为y元,然后根据题意列出不等式即可得出结论.【详解】(1)设第一次购书的进价是x元/本,则第二批每套的进价是(1+20%)x元/本,根据题意得:=-10,解得:x=25,经检验,x=25是原分式方程的解.答:第一次购书每本25元.(2)设每本图书的售价为y元,根据题意得:[500÷25+(500÷25+10)]y-500-900≥(500+900)×25%,解得:y≥1.答:每本图书的售价至少是1元.此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.16、(1)①;②的值为或1或;(2).【解析】

(1)用待定系数法求出B点坐标,再求得正比例函数解析式,①由函数值的大小关系列出x的不等式,便可求得x的取值范围;②当l3过l1与l2的交点和l3与l1或l2平行时,l1,l2,l3不能围成三角形,由此求出k3;(2)根据题意求得k1=-2,则y1=-2x+4m,代入(n,0),即可得到m,n的数量关系.【详解】解:(1)依题意,得:,图象经过点,所以,,解得:所以,,正比例函数的图象经过点,所以,,解得:,所以,,。①若,则,解得,;②若,,不能围成三角形,则或,或经过与的交点,∵为:,为,解,解得,∴交点,代入得,,解得,∴的值为或1或;(2)∵一次函数的图象经过点,∴①直线与轴交于点,∴②∴①×2+②得,,∵,∴,∴一次函数为,∵经过∴,∴.本题考查了一次函数和一元一次不等式,一次函数的图象以及一次函数的性质,明确不能构成三角形的三种情况是解题的关键.17、20.【解析】

设菱形AECF的边长为x,根据矩形的性质得到∠B=90°,根据勾股定理列出方程,解方程求出x的值,根据菱形的面积公式计算即可.【详解】设菱形AECF的边长为x,则BE=8−x,∵四边形ABCD为矩形,∴∠B=90°,由勾股定理得,,即,解得,x=5,即EC=5,∴菱形AECF的面积=EC⋅AB=20.此题考查矩形的性质、翻折变换(折叠问题)、菱形的性质,解题关键在于掌握烦着图形得变化规律.18、(1);(2)①1;②【解析】

(1)先利用直线y=3x+3确定A、B的解析式,然后利用一次函数的性质求解;(2))①把C(-,n)代入y=3x+3可求出n的值;②利用两直线垂直,一次项系数互为负倒数可设直线CD的解析式为y=-x+b,然后把C(-,1)代入求出b即可.【详解】解:(1)当y=0时,3x+3=0,解得x=-1,则A(-1,0),当x=0时,y=3x+3=3,则B(0,3),当0<y≤3,自变量x的取值范围是-1≤x<0;(2)①把C(-,n)代入y=3x+3得3×(-)+3=n,解得n=1;②∵AB⊥CD,∴设直线CD的解析式为y=-x+b,把C(-,1)代入得-×(-)+b=1,解得b=,∴直线CD的解析式为y=-x+.本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数的性质.一、填空题(本大题共5个小题,每小题4分,共20分)19、(0,)【解析】

作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;E点坐标即为直线A'D与y轴的交点;【详解】解:作点A关于y轴的对称点A',连接A'D,此时△ADE的周长最小值为AD+DA'的长;∵A的坐标为(﹣4,5),D是OB的中点,∴D(﹣2,0),由对称可知A'(4,5),设A'D的直线解析式为y=kx+b,∴,∴,∴,∴E(0,);故答案为(0,);本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE的最短距离转化为线段A'D的长是解题的关键.20、m>1【解析】

根据图象的增减性来确定(m﹣1)的取值范围,从而求解.【详解】解:∵一次函数y=(m﹣1)x+1,若y随x的增大而增大,∴m﹣1>2,解得,m>1.故答案是:m>1.本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<2;函数值y随x的增大而增大⇔k>2.21、2<v<1【解析】

由∠ACO=45°可设直线AB的解析式为y=-x+b,由点A、B在反比例函数图象上可得出p=,q=,代入点A、B坐标中,再利用点A、B在直线AB上可得=﹣u+b①,=﹣v+b②,两式做差即可得出u关于v的关系式,结合u的取值范围即可得答案.【详解】∵∠ACO=45°,直线AB经过二、四象限,∴设直线AB的解析式为y=﹣x+b.∵点A(u,p)和点B(v,q)为反比例函数的图象上的点,∴p=,q=,∴点A(u,),点B(v,).∵点A、B为直线AB上的点,∴=﹣u+b①,=﹣v+b②,①﹣②得:,即.∵<u<2,∴2<v<1,故答案为:2<v<1.本题考查反比例函数与一次函数的综合,根据∠ACO=45°设出直线AB解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键.22、1【解析】

根据勾股定理可得AC的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD的度数.【详解】∵AB=2,BC=2,∠ABC=90°,∴AC=,,∠BAC=45°,

∵12+(2)2=32,

∴∠DAC=90°,

∴∠BAD=90°+45°=1°,

故答案是:1.考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.23、【解析】

根据一次函数的增减性可求得k的取值范围.【详解】∵一次函数y=(1-k)x+1(k是常数)中y随x的增大而减小,∴1-k<0,解得k>1,故答案为:k>1.本题主要考查一次函数的增减性,掌握一次函数的增减性是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)【解析】

(1)由等边三角形的性质得出ED=CD=CE,证出△CEF是等边三角形,得出EF=CF=CE,得出ED=CD=EF=CF,即可得出结论;(2)连接DF,与CE相交于点G,根据菱形的性质求出DG,即可得出结果.【详解】(1)证明:∵△ABC与△CDE都是等边三角形,∴ED=CD=CE,∠A=∠B=∠BCA=60°.∴EF∥AB.∴∠CEF=∠A=60°,∠CFE=∠B=60°,∴∠CEF=∠CFE=∠ACB,∴△CEF是等边三角形,∴EF=CF=CE,∴ED=CD=EF=CF,∴四边形EFCD是菱形.(2)连接DF与CE交于点G∵四边形EFCD是菱形∴DF⊥CE,DF=2DG∵CD=2,△EDC是等边三边形∴CG=1,DG=∴DF=2DG=,即D、F两点间的距离为本题考查了菱形的判定与性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论