版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中学数学二模模拟试卷一、选择题(本大题共12小题,共36.0分)下列各组数中结果相同的是()A.32与23 B.|-3|3与(-3)3据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107 B.0.1442×107下列计算中,错误的是()A.5a3-a3=4a3 下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个某班班长统计去年1-8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.平均数是58 B.众数是42
C.中位数是58 D.每月阅读数量超过40的有4个月在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是()A.正三角形 B.正四边形 C.正五边形 D.正六边形下列命题错误的是()A.若一个多边形的内角和与外角和相等,则这个多边形是四边形
B.矩形一定有外接圆
C.对角线相等的菱形是正方形
D.一组对边平行,另一组对边相等的四边形是平行四边形如图是某几何体的三视图,则该几何体的表面积为()A.24+123 B.16+123 C.24+63 在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A.12 B.14 C.38运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()A.1 B.2 C.3 D.4如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.152 B.43 C.215 如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()
①AE=BF;②AE⊥BF;③sin∠BQP=45;④S四边形ECFG=2S△BGE.A.4
B.3
C.2
D.1
二、填空题(本大题共4小题,共12.0分)分解因式:4ax2-ay2=______.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为______.
如图,已知第一象限内的点A在反比例函数y=2x上,第二象限的点B在反比例函数y=kx上,且OA⊥OB,cosA=33,则k的值为______如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=______.
三、计算题(本大题共2小题,共12.0分)先化简,再求值:(2aa2-1-1a+1)÷a+2a2-a,其中a=5.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:
第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF.
若BD=6,AF=4,CD=3,求线段BE的长.
四、解答题(本大题共5小题,共40.0分)计算:8+3tan30°+|1-2|-(-12)-2.
将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x<8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.
(1)这部分男生有多少人?其中成绩合格的有多少人?
(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?
(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.
某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.
(1)该小区新建1个地上停车位和1个地下停车位需多少万元?
(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?
如图,△AOB中,A(-8,0),B(0,323),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F,
(1)⊙P的半径为______;
(2)求证:EF为⊙P的切线;
(3)若点H是CD
上一动点,连接OH、FH,当点P在PD
上运动时,试探究OHFH是否为定值?若为定值,求其值;若不是定值,请说明理由.
如图,在平面直角坐标系xOy中,以直线x=52对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.
(1)求抛物线的函数表达式;
(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若AFFB=34,且△BCG与△BCD面积相等,求点G的坐标;
(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.
答案和解析1.【答案】D
【解析】解:A、32=9,23=8,故不相等;
B、|-3|3=27(-3)3=-27,故不相等;
C、(-3)2=9,-32=-9,故不相等;
D、(-3)3=-27,-33=-27,故相等,
故选:D.
利用有理数乘方法则判定即可.
本题主要考查了有理数乘方,解题的关键是注意符号.2.【答案】A
【解析】解:14420000=1.442×107,
故选:A.
根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.
本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.【答案】D
【解析】解:A、5a3-a3=4a3,正确,本选项不符合题意;
B、(-a)2•a3=a5,正确,本选项不符合题意;
C、(a-b)3•(b-a)2=(a-b)5,正确,本选项不符合题意;
D、2m•3n≠6m+n,错误,本选项符合题意;
故选:D.
根据合并同类项法则,同底数幂的乘法法则等知识求解即可求得答案.
本题考查的是合并同类项法则,同底数幂的乘法,需注意区别:同底数幂的乘法:底数不变,指数相加;幂的乘方:底数不变,指数相乘.4.【答案】C
【解析】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选C.
根据轴对称图形与中心对称图形的概念求解.
掌握中心对称图形与轴对称图形的概念:
轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;
中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.【答案】C
【解析】解:A、每月阅读数量的平均数是=56.625,故A错误;
B、出现次数最多的是58,众数是58,故B错误;
C、由小到大顺序排列数据28,36,42,58,58,70,78,83,中位数是58,故C正确;
D、由折线统计图看出每月阅读量超过40天的有6个月,故D错误;
故选:C.
根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.
本题考查的是折线统计图、平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位,关键是根据折线统计图获得有关数据.6.【答案】D
【解析】解:由题意这个正n边形的中心角=60°,
∴n==6,
∴这个多边形是正六边形,
故选:D.
求出正多边形的中心角即可解决问题.
本题考查正多边形与圆,解题的关键是熟练掌握基本知识,属于中考常考题型.7.【答案】D
【解析】解:A、一个多边形的外角和为360°,若外角和=内角和=360°,所以这个多边形是四边形,故此选项正确;
B、矩形的四个角都是直角,满足对角互补,根据对角互补的四边形四点共圆,则矩形一定有外接圆,故此选项正确;
C、对角线相等的菱形是正方形,故此选项正确;
D、一组对边平行且相等的四边形是平行四边形;而一对边平行,另一组对边相等的四边形可能是平行四边形或是梯形,故此选项错误;
本题选择错误的命题,
故选:D.
A、任意多边形的外角和为360°,然后利用多边形的内角和公式计算即可;
B、判断一个四边形是否有外接圆,要看此四边形的对角是否互补,矩形的对角互补,一定有外接圆;
C、根据正方形的判定方法进行判断;
D、一组对边平行且相等的四边形是平行四边形.
本题主要考查的是多边形的内角和和外角和,四点共圆问题,正方形的判定,平行四边形的判定,掌握这些定理和性质是关键.8.【答案】A
【解析】解:观察该几何体的三视图发现该几何体为正六棱柱;
该六棱柱的棱长为2,正六边形的半径为2,
所以表面积为2×2×6+×2××6×2=24+12,
故选:A.
首先确定该几何体的形状,然后根据各部分的尺寸得到该几何体的表面积即可.
本题考查由三视图求表面积,考查由三视图还原直观图,注意求面积时,由于包含的部分比较多,不要漏掉,本题是一个基础题.9.【答案】B
【解析】解:画树状图得:
∵共有8种等可能的结果,经过3次传球后,球仍回到甲手中的有2种情况,
∴经过3次传球后,球仍回到甲手中的概率是:=.
故选:B.
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与经过三次传球后,球仍回到甲手中的情况,再利用概率公式即可求得答案.
此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.【答案】D
【解析】解:∵3※2=1,
∴运算※就是找到第三列与第二行相结合的数,
∴(2※4)=3,(1※3)=3,
∴3※3=4.
故选:D.
根据题目提供的运算找到运算方法,即:3※2=1就是第三列与第二行所对应的数,按此规律计算出(2※4)※(1※3)的结果即可.
本题考查了学生们的阅读理解能力,通过观察例子,从中找到规律,进而利用此规律进行进一步的运算.11.【答案】C
【解析】解:∵∠ABC的平分线交CD于点F,
∴∠ABE=∠CBE,
∵四边形ABCD是平行四边形,
∴DC∥AB,
∴∠CBE=∠CFB=∠ABE=∠E,
∴CF=BC=AD=8,AE=AB=12,
∵AD=8,
∴DE=4,
∵DC∥AB,
∴,
∴,
∴EB=6,
∵CF=CB,CG⊥BF,
∴BG=BF=2,
在Rt△BCG中,BC=8,BG=2,
根据勾股定理得,CG===2,
故选:C.
先由平行四边形的性质和角平分线的定义,判断出∠CBE=∠CFB=∠ABE=∠E,从而得到CF=BC=8,AE=AB=12,再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.
此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.12.【答案】B
【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,
∴CF=BE,
在△ABE和△BCF中,
,
∴Rt△ABE≌Rt△BCF(SAS),
∴∠BAE=∠CBF,AE=BF,故①正确;
又∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠BGE=90°,
∴AE⊥BF,故②正确;
根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°
∵CD∥AB,
∴∠CFB=∠ABF,
∴∠ABF=∠PFB,
∴QF=QB,
令PF=k(k>0),则PB=2k
在Rt△BPQ中,设QB=x,
∴x2=(x-k)2+4k2,
∴x=,
∴sin∠BQP==,故③正确;
∵∠BGE=∠BCF,∠GBE=∠CBF,
∴△BGE∽△BCF,
∵BE=BC,BF=BC,
∴BE:BF=1:,
∴△BGE的面积:△BCF的面积=1:5,
∴S四边形ECFG=4S△BGE,故④错误.
故选:B.
首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.
本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.13.【答案】a(2x+y)(2x-y)
【解析】解:原式=a(4x2-y2)
=a(2x+y)(2x-y),
故答案为:a(2x+y)(2x-y).
首先提取公因式a,再利用平方差进行分解即可.
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】π2+3
解:设AD与圆的切点为G,连接BG,
∴BG⊥AD,
∵∠A=60°,BG⊥AD,
∴∠ABG=30°,
在直角△ABG中,BG=AB=×2=,AG=1,
∴圆B的半径为,
∴S△ABG=×1×=
在菱形ABCD中,∠A=60°,则∠ABC=120°,
∴∠EBF=120°,
∴S阴影=2(S△ABG-S扇形)+S扇形FBE=2×(-)+=+.
故答案为:+.
设AD与圆的切点为G,连接BG,通过解直角三角形求得圆的半径,然后根据扇形的面积公式求得三个扇形的面积,进而就可求得阴影的面积.
此题主要考查了菱形的性质以及切线的性质以及扇形面积等知识,正确利用菱形的性质和切线的性质求出圆的半径是解题关键.15.【答案】-4
【解析】解:作AC⊥x轴于点C,作BD⊥x轴于点D.
则∠BDO=∠ACO=90°,
则∠BOD+∠OBD=90°,
∵OA⊥OB,cosA=,
∴∠BOD+∠AOC=90°,tanA=,
∴∠BOD=∠OAC,
∴△OBD∽△AOC,
∴=()2=(tanA)2=2,
又∵S△AOC=×2=1,
∴S△OBD=2,
∴k=-4.
故答案为:-4.
作AC⊥x轴于点C,作BD⊥x轴于点D,易证△OBD∽△AOC,则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.
本题考查了相似三角形的判定与性质,以及反比例函数的比例系数k的几何意义,正确作出辅助线求得两个三角形的面积的比是关键.16.【答案】2+3或4+23
【解析】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,
当四边形ABCE为平行四边形,
∵AB=BC,
∴四边形ABCE是菱形,
∵∠A=∠C=90°,∠B=150°,BC∥AN,
∴∠ADC=30°,∠BAN=∠BCE=30°,
则∠NAD=60°,
∴∠AND=90°,
∵四边形ABCE面积为2,
∴设BT=x,则BC=EC=2x,
故2x2=2,
解得:x=1(负数舍去),
则AE=EC=2,EN==,
故AN=2+,
则AD=DC=4+2;
如图2,当四边形BEDF是平行四边形,
∵BE=BF,
∴平行四边形BEDF是菱形,
∵∠A=∠C=90°,∠B=150°,
∴∠ADB=∠BDC=15°,
∵BE=DE,
∴∠AEB=30°,
∴设AB=y,则BE=2y,AE=y,
∵四边形BEDF面积为2,
∴AB×DE=2y2=2,
解得:y=1,故AE=,DE=2,
则AD=2+,
综上所述:CD的值为:2+或4+2.
故答案为:2+或4+2.
根据题意结合裁剪的方法得出符合题意的图形有两个,分别利用菱形的判定与性质以及勾股定理得出CD的长.
此题主要考查了剪纸问题以及勾股定理和平行四边形的性质等知识,根据题意画出正确图形是解题关键.17.【答案】解:原式=[2a(a+1)(a-1)-a-1(a+1)(a-1)]÷a+2a(a-1)
=a+1(a+1)(a-1)•a(a-1)a+2
=
先根据分式混合运算顺序和运算法则化简原式,再将a的值代入计算可得.
本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.18.【答案】解:根据作法可知:MN是线段AD的垂直平分线,
∴AE=DE,AF=DF,
∴∠EAD=∠EDA,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠EDA=∠CAD,
∴DE∥AC,
同理DF∥AE,
∴四边形AEDF是平行四边形,
而EA=ED,
∴四边形AEDF为菱形,
∴AE=DE=DF=AF=4,
∵DE∥AC,
∴BE:AE=BD:CD,即BE:4=6:3,
∴BE=8.
【解析】
根据作法得到MN是线段AD的垂直平分线,则AE=DE,AF=DF,所以∠EAD=∠EDA,加上∠BAD=∠CAD,得到∠EDA=∠CAD,则可判断DE∥AC,同理DF∥AE,于是可判断四边形AEDF是平行四边形,加上EA=ED,则可判断四边形AEDF为菱形,所以AE=DE=DF=AF=4,然后利用平行线分线段成比例可计算BE的长.
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定与性质和平行线分线段成比例.19.【答案】解:原式=22+3×33+2-1-4=22+1+2-1-4=32-4.
依据二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质进行化简,然后再进行计算即可.
本题主要考查的是实数的运算,熟练掌握二次根式的性质、特殊锐角三角函数值、绝对值的性质、负整数指数幂的性质是解题的关键.20.【答案】解:(1)∵A组占10%,有5人,
∴这部分男生共有:5÷10%=50(人);
∵只有A组男人成绩不合格,
∴合格人数为:50-5=45(人);
(2)∵C组占30%,共有人数:50×30%=15(人),B组有10人,D组有15人,
∴这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,
∴成绩的中位数落在C组;
∵D组有15人,占15÷50=30%,
∴对应的圆心角为:360°×30%=108°;
(3)成绩优秀的男生在E组,含甲、乙两名男生,记其他三名男生为a,b,c,
画树状图得:
∵共有20种等可能的结果,他俩至少有1人被选中的有14种情况,
∴他俩至少有1人被选中的概率为:1420=710.
(1)根据题意可得:这部分男生共有:5÷10%=50(人);又由只有A组男人成绩不合格,可得:合格人数为:50-5=45(人);
(2)由这50人男生的成绩由低到高分组排序,A组有5人,B组有10人,C组有15人,D组有15人,E组有5人,可得:成绩的中位数落在C组;又由D组有15人,占15÷50=30%,即可求得:对应的圆心角为:360°×30%=108°;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他俩至少有1人被选中的情况,再利用概率公式即可求得答案.
此题考查了树状图法与列表法求概率以及直方图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,
根据题意,得x+y=0.63x+2y=1.3,
解得:x=0.1y=0.5.
答:新建1个地上停车位需要0.1万元,新建1个地下停车位需0.5万元.
(2)设建m(m为整数)个地上停车位,则建(50-m)个地下停车位,
根据题意,得:12<0.1m+0.5(50-m)≤13,
解得:30≤m<32.5.
∵m为整数,
∴m=30,31,32,共有3种建造方案.
①建30个地上停车位,20个地下停车位;
②建31个地上停车位,19个地下停车位;
③建32个地上停车位,18个地下停车位.
(1)设新建1个地上停车位需要x万元,新建1个地下停车位需y万元,根据题意列出方程就可以求出结论;
(2)设建m个地上停车位,则建(50-m)个地下停车位,根据题意建立不等式组就可以求出结论
本题考查了二元一次方程组的运用及解法,一元一次不等式及不等式组的运用及解法.在解答中要注意实际问题中未知数的取值范围的运用.22.【答案】5
【解析】解:(1)连接PC,
∵AC平分∠OAB,
∴∠BAC=∠OAC,
∵PA=PC,
∴∠PCA=∠PAC,
∴∠BAC=∠ACP,
∴PC∥AB,
∴△OPC∽△OAB,
∴,
∵A(-8,0),B(0,),
∴OA=8,OB=,
∴AB=,
∴=,
∴PC=5,
∴⊙P的半径为5;
故答案为:5;
(2)证明:连接CP,
∵AP=CP,
∴∠PAC=∠PCA,
∵AC平分∠OAB,
∴∠PAC=∠EAC,
∴∠PCA=∠EAC,
∴PC∥AE,
∵CE⊥AB,
∴CP⊥EF,
即EF是⊙P的切线;
(3)是定值,=,
连接PH,
由(1)得AP=PC=PH=5,
∵A(-8,0),
∴OA=8,
∴OP=OA-AP=3,
在Rt△POC中,OC===4,
由射影定理可得OC2=OP•OF,
∴OF=,
∴PF=PO+OF=,
∵=,==,
∴,又∵∠HPO=∠FPH,
∴△POH∽△PHF,
∴,
当H与D重合时,.
(1)连接PC,根据角平分线的定义得到∠BAC=∠OAC,根据等腰三角形的性质得到∠PCA=∠PAC,等量代换得到∠BAC=∠ACP,推出PC∥AB,根据相似三角形的性质即可得到结论;
(2)连接CP,根据等腰三角形的性质得到∠PAC=∠PCA,由角平分线的定义得到∠PAC=∠EAC,等量代换得到∠PCA=∠EAC,推出PC∥AE,于是得到结论;
(3)连接PH,由(1)得AP=PC=PH=中学数学二模模拟试卷一、选择题(本大题共10小题,共30.0分)给出四个实数8,2,0,-1,其中无理数是()A.8 B.2 C.0 D.-我国某国产手机使用了新一代移动SOC处理器麒麟980,麒麟980实现了基于Cortex-A76的开发商用,相较上一代处理器在表现上提升75%,在能效上提升58%,采用7nm制程工艺的手机芯片,在指甲盖大小的尺寸上塞进69亿个晶体管数据“69亿”用科学记数法表示为()A.6.9×108 B.6.9×109如图是正方体的表面展开图,则与“2019”字相对的字是()A.考
B.必
C.胜
D.
下列计算正确的是()A.a2⋅a3=a6 B.九年级(15)班小姜同学所在小组的7名成员的中招体育成绩(单位:分)依次为70,65,63,68,64,68,69,则这组数据的众数与中位数分别是()A.68分,68分 B.68分,65分 C.67分66.5分 D.70分,65分某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.求甲、乙两种图书每本价格分别为多少元?我们设乙图书每本价格为x元,则可得方程()A.8002.5x-800x=24 B.800x已知不等式2-x2≤2x-4A.
B.
C.
D.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.116 B.12 C.38如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(8,6),以A为圆心,任意长为半径画弧,分别交AC、AO于点M、N,再分别以M、N为圆心,大于12MN长为半径画弧两弧交于点Q,作射线AQ交y轴于点D,则点D的坐标为()A.(0,1) B.(0,83) C.(0,5如图①,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动.设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图②所示,则图②中的b等于()A.83 B.37 C.5 D.二、填空题(本大题共5小题,共15.0分)如果分式1x-2有意义,那么实数x的取值范围是______已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y2的大小关系为______.关于x的一元二次方程(a-1)x2-2x+1=0有实数根,则a的取值范围是______.如图,四边形ABCD为矩形,以A为圆心,AD为半径的弧交AB的延长线于点E,连接BD,若AD=2AB=4,则图中阴影部分的面积为______.
如图,∠AOB=90°,点P为∠AOB内部一点,作射线OP,点M在射线OB上,且OM=3,点M′与点M关于射线OP对称,且直线MM′与射线OA交于点N.当△ONM'为等腰三角形时,ON的长为______.
三、计算题(本大题共1小题,共8.0分)先化简,再求值(1a-b-ba2-b2)÷a2-四、解答题(本大题共7小题,共67.0分)2019年央视315晚会曝光了卫生不达标的“毒辣条”,“食品安全”受到全社会的广泛关注,“安全教育平台”也推出了“将毒食品拋出窗外”一课我校为了了解九年级家长和学生参“将毒食品抛出窗外”的情况,在我校九年级学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:
A仅学生自己参与;B.家长和学生一起参与;C仅家长自己参与;D.家长和学生都未参
请根据图中提供的信息解答下列问题
(1)在这次抽样调查中,共调查了______名学生
(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数
(3)根据抽样调查结果,估计我校九年级2000名学生中“家长和学生都未参与”的人数
如图直线y1=-x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点
(1)求k的值;
(2)直接写出当x>0时,不等式34x+b>kx的解集;
(3)若点P在x轴上,连接AP,且AP把△ABC的面积分成1:2两部分,求此时点
如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.
(1)求证:AC∥DE;
(2)连接AD、CD、OC.填空
①当∠OAC的度数为______时,四边形AOCD为菱形;
②当OA=AE=2时,四边形ACDE的面积为______.
如图是某户外看台的截面图,长10m的看台AB与水平地面AP的夹角为35°,与AP平行的平台BC长为1.9m,点F是遮阳棚DE上端E正下方在地面上的一点,测得AF=2m,在挡风墙CD的点D处测得点E的仰角为26°,求遮阳棚DE的长.(参考数据:sin35°≈0.57,cos35°≈0.82,sin26°≈0.44,cos26°≈0.90)
有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.
(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?
(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?
如图,△ABC与△CDE为等腰直角三角形,∠BAC=∠DEC=90°,连接AD,取AD中点P,连接BP,并延长到点M,使BP=PM,连接AM、EM、AE,将△CDE绕点C顺时针旋转.
(1)如图①,当点D在BC上,E在AC上时,AE与AM的数量关系是______,∠MAE=______;
(2)将△CDE绕点C顺时针旋转到如图②所示的位置,(1)中的结论是否仍然成立,若成立,请给出证明,若不成立,请说明理由;
(3)若CD=12BC,将△CDE由图①位置绕点C顺时针旋转α(0°<α<360°),当ME=62CD时,请直接写出α的值.
如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.
(1)求该抛物线所表示的二次函数的表达式;
(2)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.
答案和解析1.【答案】A
【解析】解:A、=2,是无理数,故本选项符合题意;
B、,2是有理数,不是无理数,故本选项不符合题意;
C、0是有理数,不是无理数,故本选项不符合题意;
D、-1是有理数,不是无理数,故本选项不符合题意;
故选:A.
分别根据无理数、有理数的定义即可判定选择项.
此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】B
【解析】解:69亿=6.9×109,
故选:B.
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C
【解析】解:由图形可知,与“2019”字相对的字是“胜”.
故选:C.
由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.
本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.4.【答案】C
【解析】解:A、a2•a3=a2+3=a5,故此选项错误;
B、(a+b)(a-2b)=a•a-a•2b+b•a-b•2b=a2-2ab+ab-2b2=a2-ab-2b2.故此选项错误;
C、(ab3)2=a2•(b3)2=a2b6,故此选项正确;
D、5a-2a=(5-2)a=3a,故此选项错误.
故选:C.
根据同底数幂的乘法法则:底数不变,指数相加;多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn;积的乘方:等于把积的每一个因式分别乘方再把所得的幂相乘;合并同类项:只把系数相加,字母部分完全不变,一个个计算筛选,即可得到答案.
本题主要考查多项式乘以多项式,同底数幂的乘法,积的乘方,合并同类项的法则,注意正确把握每一种运算的法则,不要混淆.5.【答案】A
【解析】解:中招体育成绩(单位:分)排序得:63,64,65,68,68,69,70;处在中间的是:68分,因此中位数是:68分;出现次数最多的数也是68分,因此众数是68分;
故选:A.
根据众数、中位数的意义,将这组数据从小到大排序后,处在中间位置的数是中位数,出现次数最多的数就是众数
考查中位数、众数的意义和求法,准确理解中位数、众数的意义和求法是解决问题的前提.6.【答案】B
【解析】解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,
根据题意可得:-=24,
解得:x=20,
经检验得:x=20是原方程的根,
则2.5x=50.
答:甲图书每本价格是50元,乙图书每本价格为20元.
故选:B.
可设乙图书每本价格为x元,则甲图书每本价格是2.5x元,利用用800元单独购买甲图书比用800元单独购买乙图书要少24本得出等式求出答案.
此题主要考查了分式方程的应用,正确表示出图书的价格是解题关键.7.【答案】A
【解析】解:根据题意得:,
由①得:x≥2,
由②得:x<5,
∴2≤x<5,
表示在数轴上,如图所示,
故选:A.
把已知双向不等式变形为不等式组,求出各不等式的解集,找出解集的公共部分即可.
此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.8.【答案】D
【解析】解:画树状图得:
∵共有16种等可能的结果,两次摸出红球的有9种情况,
∴两次摸出红球的概率为;
故选:D.
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出红球情况,再利用概率公式即可求得答案.
本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.【答案】B
【解析】解:如图,过点D作DE⊥AC于点E,
∵四边形OABC为矩形,点B的坐标为(8,6),
∴OA=8,OC=6
∴AC==10
由题意可得AD平分∠OAC
∴∠DAE=∠DAO,AD=AD,∠AOD=∠AED=90°
∴△ADO≌△ADE(AAS)
∴AE=AO=8,OD=DE
∴CE=2,
∵CD2=DE2+CE2,
∴(6-OD)2=4+OD2,
∴OD=
∴点D(0,)
故选:B.
过点D作DE⊥AC于点E,由勾股定理可求AC=10,由“AAS”可证△ADO≌△ADE,可证AE=AO=8,OD=DE,可得CE=2,由勾股定理可求OD的长,即可求点D坐标.
本题考查了矩形的性质,坐标与图形的性质,勾股定理,全等三角形的判定和性质,证明△ADO≌△ADE是本题的关键.10.【答案】B
【解析】解:如图,连接AC交BD于O,
由图②可知,BC=CD=4,BD=14-8=6,
∴BO=BD=×6=3,
在Rt△BOC中,CO===,
AC=2CO=2,
所以,菱形的面积=AC•BD=×2×6=6,
当点P在CD上运动时,△ABP的面积不变,为b,
所以,b=×6=3.
故选:B.
连接AC交BD于O,根据图②求出菱形的边长为4,对角线BD为6,根据菱形的对角线互相垂直平分求出BO,再利用勾股定理列式求出CO,然后求出AC的长,再根据菱形的面积等于对角线乘积的一半求出菱形的面积,b为点P在CD上时△ABP的面积,等于菱形的面积的一半,从而得解.
本题考查了动点问题的函数图象,主要利用了菱形的对角线互相垂直平分的性质,菱形的面积等于对角线乘积的一半,根据图形得到菱形的边长与对角线BD的长是解题的关键.11.【答案】x≠2
【解析】解:由题意得:x-2≠0,
解得:x≠2,
故答案为:x≠2.
根据分式有意义的条件可得x-2≠0,再解即可.
此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.12.【答案】>
【解析】解:∵直线经过第一、二、四象限,
∴y随x的增大而减小,
∵x1<x2,
∴y1与y2的大小关系为:y1>y2.
故答案为:>.
直接利用一次函数的性质分析得出答案.
此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.13.【答案】a≤2且a≠1
【解析】解:∵一元二次方程(a-1)x2-2x+1=0有实数根,
∴△=b2-4ac=(-2)2-4(a-1)≥0,且a-1≠0,
∴a≤2且a≠1.
故答案为:a≤2且a≠1.
根据根的判别式和一元二次方程的定义可得△=b2-4ac≥0,且a-1≠0,再进行整理即可.
此题考查了根的判别式和一元二次方程的定义,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.14.【答案】43π+23-4
解:BC交弧DE于F,连接AF,如图,
AF=AD=4,
∵AD=2AB=4
∴AB=2,
在Rt△ABF中,∵sin∠AFB==,
∴∠AFB=30°,
∴∠BAF=60°,∠DAF=30°,BF=AB=2,
∴图中阴影部分的面积=S扇形ADF+S△ABF-S△ABD
=+×2×2-×2×4
=π+2-4.
BC交弧DE于F,连接AF,如图,先利用三角函数得到∠AFB=30°,则∠BAF=60°,∠DAF=30°,BF=AB=2,然后根据三角形面积公式和扇形的面积公式,利用图中阴影部分的面积=S扇形ADF+S△ABF-S△ABD进行计算即可.
本题考查了扇形面积的计算:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=或S扇形lR(其中l为扇形的弧长);求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了矩形的性质.15.【答案】3或1
【解析】解:M'位置有两种情况,
Ⅰ.M'在∠AOB内部,如图1,
∵点M′与点M关于射线OP对称,△ONM'为等腰三角形,
∴M′N=OM′=OM=,MH=M′H,
∵∵∠AOB=90°,cos∠OMN=
∴,
解得MH=,
∴MN=2,
在Rt△MON中,ON==3
Ⅱ.M'在∠AOB外部,如图2,过N点作QN⊥OM′,
∵△ONM'为等腰三角形,即M′N=ON,
∴M′Q=M′O,
∵OM=,点M′与点M关于射线OP对称,
∴M′Q=,OM=OM′,
∴∠OM′M=∠OMM′,cos∠OM′M=,cos∠OMM′=,
设ON=M′N=x,NH=M′H=y,
,
解得:x=1,y=,
综上所述:当△ONM'为等腰三角形时,ON的长为3或1.
故答案为3,1.
如图分两种情况,Ⅰ.M'在∠AOB内部,Ⅱ.M'在∠AOB外部,由已知和等腰三角形性质、利用三角函数列方程,解直角三角形即可解答.
本题主要考查了等腰三角形存在性问题,解决本题的关键是正确认识到需要讨论,△ONM'为等腰三角形存在情况有两种,并用解直角三角形方法求解.16.【答案】解:原式=a+b-b(a+b)(a-b)•(a-b)2a(a-b)=1a+b,
当a=2×22
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.【答案】400
【解析】解:(1)本次调查总人数80÷20%=400(人),
故答案为400;
(2)B类人数400-(80+60+20)=240(人),
补全统计图如下
C类所对应扇形的圆心角的度数=54°;
(3)我校九年级2000名学生中“家长和学生都未参与”的人数2000×=100(人),
答:我校九年级2000名学生中“家长和学生都未参与”的人数约100人.
(1)本次调查总人数80÷20%=400(人);
(2)B类人数400-(80+60+20)=240(人),C类所对应扇形的圆心角的度数=54°;
(3)我校九年级2000名学生中“家长和学生都未参与”的人数2000×=100(人).
本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力,以及条形统计图;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.【答案】解:(1)把A(1,m)代入y1=-x+4,可得m=-1+4=3,
∴A(1,3),
把A(1,3)代入双曲线y=kx,可得k=1×3=3,
(2)∵A(1,3),
∴当x>0时,不等式34x+b>kx的解集为:x>1;
(3)y1=-x+4,令y=0,则x=4,
∴点B的坐标为(4,0),
把A(1,3)代入y2=34x+b,可得3=34×1+b,
∴b=94,
∴y2=34x+94,
令y=0,则x=-3,即C(-3,0),
∴BC=7,
∵AP把△ABC的面积分成1:2两部分,
∴CP=13BC=73,或BP=13BC=73,
∴OP=3-73=23,或OP=4-73=53
(1)求得A(1,3),把A(1,3)代入双曲线y=,可求得k的值;
(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;
(3)分两种情况进行讨论,AP把△ABC的面积分成1:2两部分,则CP=BC=,或BP=CP=BC=,即可得到OP=3-=,或OP=4-=,进而得出点P的坐标.
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.19.【答案】30°
23
【解析】证明:(1)∵F为弦AC的中点,
∴AF=CF,且OF过圆心O
∴FO⊥AC,
∵DE是⊙O切线
∴OD⊥DE
∴DE∥AC
(2)①当∠OAC=30°时,四边形AOCD是菱形,
理由如下:如图,连接CD,AD,OC,
∵∠OAC=30°,OF⊥AC
∴∠AOF=60°
∵AO=DO,∠AOF=60°
∴△ADO是等边三角形
又∵AF⊥DO
∴DF=FO,且AF=CF,
∴四边形AOCD是平行四边形
又∵AO=CO
∴四边形AOCD是菱形
②如图,连接CD,
∵AC∥DE
∴△AFO∽△ODE
∴
∴OD=2OF,DE=2AF
∵AC=2AF
∴DE=AC,且DE∥AC
∴四边形ACDE是平行四边形
∵OA=AE=OD=2
∴OF=DF=1,OE=4
∵在Rt△ODE中,DE==2
∴S四边形ACDE=DE×DF=2×1=2
故答案为:2
(1)由垂径定理,切线的性质可得FO⊥AC,OD⊥DE,可得AC∥DE;
(2)①连接CD,AD,OC,由题意可证△ADO是等边三角形,由等边三角形的性质可得DF=OF,AF=FC,且AC⊥OD,可证四边形AOCD为菱形;
②由题意可证△AFO∽△ODE,可得,即OD=2OF,DE=2AF=AC,可证四边形ACDE是平行四边形,由勾股定理可求DE的长,即可求四边形ACDE的面积.
本题是圆的综合题,考查了圆的有关知识,菱形的判定,等边三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.20.【答案】解:分别过点B、D作BH⊥AP,DG⊥EF,垂足分别为点H,G.
∴∠BHA=∠DGE=90°,
由题意得:AB=10m,∠A=35°,∠EDG=26°,
在Rt△BAH中,AH=AB•cos35°≈10×0.82=8.2(m),
∴FH=AH-AF=8.2-2=6.2m,
GD=FH+BC=6.2+1.9=8.1(m),
在Rt△EGD中,cos∠EDG=GDDE,
∴DE=DGcos26∘≈8.10.9=9(m)
答:遮阳棚DE的长约为
作BH⊥AP,DG⊥EF,根据余弦的定义求出AH,得到DG的长,根据余弦的定义计算即可.
本题考查的是解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.21.【答案】解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:
3x+4y=182x+6y=17,
解得:x=4y=1.5,
答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;
(2)设货运公司拟安排大货车m辆,则安排小货车(10-m)辆,
根据题意可得:4m+1.5(10-m)≥33,
解得:m≥7.2,令m=8,
大货车运费高于小货车,故用大货车少费用就小
则安排方案有:大货车8辆,小货车2辆,
(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;
(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,且因为大货车运费高于小货车,故用大货车少费用就小进行安排即可.
本题以运货安排车辆为背景考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.22.【答案】AM=2AE
45°
【解析】解:(1)结论:AM=AE,∠MAE=45°.
理由:如图1中,
∵AP=PD,BP=PM,
∴四边形ABDM是平行四边形,
∴AM∥BC,
∴∠MAE=∠C,
∵AB=AC,∠BAC=90°,
∴∠C=45°,
∴∠MAE=45°,
∵∠AEM=∠DEC=90°,
∴∠AME=∠EAM=45°,
∴MA=AE.
故答案为:AM=AE,45°.
(2)如图2中,连接BD,DM,BD交AC于点O,交AE于G.
∵BC=AC,CD=CE,
∴==,
∵∠ACB=∠DCE=45°,
∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠CBD=∠CAE,==,
∴BD=AE,
∵∠BOC=∠AOG,
∴∠AGO=∠BCO=45°,
∵AP=PD,BP=PM,
∴四边形ABDM是平行四边形,
∴AM∥BD,AM=BD=AE,
∴∠MAE=∠BGA=45°,
∵EH⊥AM,
∴△AHE是等腰直角三角形,
∴AH=AE,∵AM=AE,
∴AH=MH,
∴EA=EM,
∴∠EAM=∠EMA=45°,
∴∠AEM=90°.
(3)如图2中,作EH⊥AM于H.
∵EH⊥AM,∠MAE=45°,
∴△AHE是等腰直角三角形,
∴AH=AE,∵AM=AE,
∴AH=MH,
∴EA=EM,
∴∠EAM=∠EMA=45°,
∴∠AEM=90°.
如图3-1中,
∵EM=EA=CD,设CD=a,则CE=a,BC=2a,AC=2a,EA=a,
∴AC2=AE2+EC2,
∴∠AEC=90°,
∴tan∠ACE==,
∴∠ACE=60°,
∴旋转角α=60°.
如图3-2中,同法可证∠AEC=90°,∠ACE=60°,此时旋转角α=300°.
综上所述,满足条件的α的值为60°或300°.
(中学数学二模模拟试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣的倒数是()A. B.2 C.﹣ D.﹣2【分析】根据乘积为1的两个数互为倒数,直接解答即可.【解答】解:∵﹣×(﹣2)=1,∴﹣的倒数是﹣2,故选:D.【点评】本题主要考查倒数的定义,解决此类题目时,只要找到一个数与这个数的积为1,那么此数就是这个数的倒数,特别要注意:正数的倒数也一定是正数,负数的倒数也一定是负数.2.下列所给图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项错误;D、是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为()A.110° B.140° C.35° D.130°【分析】根据圆周角定理计算即可.【解答】解:由圆周角定理得,∠ADC=2∠ABC=140°,故选:B.【点评】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.4.已知一组数据:5,7,4,8,6,7,2,则它的众数及中位数分别为()A.7,8 B.7,6 C.6,7 D.7,4【分析】根据众数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:2、4、5、6、7、7、8,则众数为:7,中位数为:6.故选:B.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A. B. C. D.【分析】根据俯视图的定义,从上往下看到的几何图形是俯视图即可判断.【解答】解:从几何体上面看,是左边2个,右边1个正方形.故选:A.【点评】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.6.如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是()A.26° B.64° C.54° D.以上答案都不对【分析】已知∠1,且∠DOF与∠1是对顶角,可求∠DOF,再利用∠DOF与∠2互余,求∠2.【解答】解:∵∠1=26°,∠DOF与∠1是对顶角,∴∠DOF=∠1=26°,又∵∠DOF与∠2互余,∴∠2=90°﹣∠DOF=90°﹣26°=64°.故选:B.【点评】此题主要考查了垂线的定义和对顶角的性质,难度不大.7.某同学参加数学、物理、化学三科竞赛平均成绩是93分,其中数学97分,化学89分,那么物理成绩是()A.91分 B.92分 C.93分 D.94分【分析】直接利用数学、物理、化学三科竞赛平均成绩是93分,可得出总分,再减去数学97分,化学89分,即可得出答案.【解答】解:物理成绩是:93×3﹣97﹣89=93(分).故选:C.【点评】此题主要考查了算术平均数,正确得出总分是解题关键.8.如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是()A.ab>0 B.a+b<0 C.(b﹣1)(a+1)>0 D.(b﹣1)(a﹣1)>0【分析】根据a、b两点在数轴上的位置判断出其取值范围,再对各选项进行逐一分析即可.【解答】解:a、b两点在数轴上的位置可知:﹣1<a<0,b>1,∴ab<0,a+b>0,故A、B错误;∵﹣1<a<0,b>1,∴b﹣1>0,a+1>0,a﹣1<0故C正确,D错误.故选:C.【点评】本题考查的是数轴的特点,根据a、b两点在数轴上的位置判断出其取值范围是解答此题的关键.9.下列三个命题中,是真命题的有()①对角线互相平分且垂直的四边形是矩形;②三个角是直角的四边形是矩形;③有一个角是直角的平行四边形是矩形.④对角线互相平分且相等的四边形是矩形A.3个 B.2个 C.1个 D.4个【分析】根据矩形的判定方法一一判断即可;【解答】解:①对角线互相平分且垂直的四边形是菱形,故①是假命题;②三个角是直角的四边形是矩形,正确,故②是真命题;③有一个角是直角的平行四边形是矩形,正确,故③是真命题;④对角线互相平分且相等的四边形是矩形,正确,故④是真命题;故选:A.【点评】本题考查矩形的判定,解题的关键是记住矩形的判定方法,属于中考常考题型.10.如图,点A,B为直线y=x上的两点,过A,B两点分别作y轴的平行线交双曲线y=(x>0)于C,D两点.若BD=3AC,则9•OC2﹣OD2的值为()A.16 B.27 C.32 D.48【分析】设点A的坐标为(m,m),点B的坐标为(n,n),则点C的坐标为(m,),点D的坐标为(n,),进而可得出BD=n﹣、AC=﹣m,结合BD=3AC可得出n﹣=3(﹣m),再利用勾股定理及配方法可得出9•OC2﹣OD2=9[(m﹣)2+4]﹣[(n﹣)2+4],代入n﹣=3(﹣m)即可求出结论.【解答】解:设点A的坐标为(m,m),点B的坐标为(n,n),则点C的坐标为(m,),点D的坐标为(n,),∴BD=n﹣,AC=﹣m,∵BD=3AC,∴n﹣=3(﹣m).9•OC2﹣OD2=9(m2+)﹣(n2+),=9[(m﹣)2+4]﹣[(n﹣)2+4],=9(m﹣)2+36﹣9(m﹣)2﹣4,=32.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及勾股定理,利用勾股定理及配方找出9•OC2﹣OD2=9[(m﹣)2+4]﹣[(n﹣)2+4]是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分)11.若a3•am=a9,则m=6.【分析】根据同底数幂的运算即可求出答案.【解答】解:由题意可知:3+m=9,∴m=6,故答案为:6【点评】本题考查同底数幂的乘除法,解题的关键是正确理解同底数幂的乘法运算,本题属于基础题型.12.因式分解:x3﹣4x=x(x+2)(x﹣2).【分析】首先提取公因式x,进而利用平方差公式分解因式得出即可.【解答】解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.13.在Rt△ABC中,∠C=90°,BC=8且cosB=,则AB=16.【分析】直接利用特殊角的三角函数值得出∠B的度数,再利用直角三角形的性质得出答案.【解答】解:如图所示:∵cosB=,∴∠B=60°,∴∠A=30°,则BC=AB=8,故AB=16.故答案为:16.【点评】此题主要考查了特殊角的三角函数值,正确得出∠B度数是解题关键.14.如图,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED=80°.【分析】先利用SSS证明△ABD≌△EBD,再根据全等三角形对应角相等即可求出∠BED.【解答】解:在△ABD与△EBD中,,∴△ABD≌△EBD,∴∠BED=∠A=80°.故答案为80.【点评】本题考查了全等三角形的判定与性质,证明出△ABD≌△EBD是解题的关键.15.如图,将△ABC绕点C顺时针旋转至△DEC,使点D落在BC的延长线上,已知∠A=27°,∠B=40°,则∠ACE=46°.【分析】先根据三角形外角的性质求出∠ACD=67°,再由△ABC绕点C按顺时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACD=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=67°,∴∠ACE=180°﹣∠ACD﹣∠BCE=180°﹣67°﹣67°=46°.故答案为:46°.【点评】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.16.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图8,则下列4个结论:①b2﹣4ac<0;②2a﹣b=0;③a+b+c<0;④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2,其中正确的是②③.【分析】利用抛物线与x轴的交点个数对①进行判断;利用抛物线的对称轴方程对②进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点点(0,0)和(1,0)之间,所以x=1时,y<0,则可对③进行判断;利用二次函数的性质对④进行判断.【解答】解:∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,所以②正确;∵抛物线对称轴为直线x=﹣1,抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的一个交点点(0,0)和(1,0)之间,∴x=1时,y<0,∴a+b+c<0,所以③正确;∵抛物线开口向下,∴当x1<x2<﹣1时,则y1<y2;当﹣1<x1<x2时,则y1>y2;所以④错误.故答案为②③.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)解方程:﹣=1.【分析】根据分式方程的解法即可求出答案.【解答】解:(x+3)2﹣4(x﹣3)=(x﹣3)(x+3)x2+6x+9﹣4x+12=x2﹣9,x=﹣15,检验:x=﹣15代入(x﹣3)(x+3)≠0,∴原分式方程的解为:x=﹣15,【点评】本题考查分式的方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.18.(9分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O,AB=5、AO=3,求菱形的面积.【分析】根据菱形的面积等于对角线乘积的一半可以求菱形ABCD的面积.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°∴,又∵AC=2OA=6,BD=2OB=8.∴.【点评】本题考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.19.(10分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1)2017年“五•一”期间,该市周边景点共接待游客50万人,扇形统计图中A景点所对应的圆心角的度数是108°,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.【分析】(1)根据A景点的人数以及百分比进行计算即可得到该市周边景点共接待游客数;先求得A景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B景点接待游客数补全条形统计图;(2)根据E景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E景点旅游的人数;(3)根据甲、乙两个旅行团在A、B、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【解答】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:故答案为:50,108°;(2)∵E景点接待游客数所占的百分比为:×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率==.【点评】本题考查的是条形统计图、扇形统计图、用样本估计总体以及概率的计算的综合应用,读懂统计图、从中获取正确的信息是解题的关键.当有两个元素时,可用树形图列举,也可以列表列举.解题时注意:概率=所求情况数与总情况数之比.20.(10分)已知A=•(x﹣y).(1)化简A;(2)若x2﹣6xy+9y2=0,求A的值.【分析】(1)直接利用分式的基本性质化简得出答案;(2)首先得出x,y之间的关系,进而代入求出答案.【解答】解:(1)A=•(x﹣y)=•(x﹣y)=;(2)∵x2﹣6xy+9y2=0,∴(x﹣3y)2=0,则x﹣3y=0,故x=3y,则A===.【点评】此题主要考查了分式的乘除运算,正确分解因式是解题关键.21.(12分)如图,△ABC是等边三角形,D为BC的中点,(1)尺规作图:(保留作图痕迹,不写作法);①过点B作AC的平行线BH;②过D作BH的垂线,分别交AC,BH,AB的延长线于E,F,G(2)在图中找出一对全等的三角形,并证明你的结论.【分析】(1)根据平行线及垂线的作法画图即可;(2)根据ASA定理得出△DEC≌△DFB即可.【解答】解:(1)作图如下:①如图1;②如图2:(2)△DEC≌△DFB证明:∵BH∥AC,∴∠DCE=∠DBF,又∵D是BC中点,∴DC=DB.在△DEC与△DFB中,∵,∴△DEC≌△DFB(ASA).【点评】本题考查的是作图﹣基本作图,熟知等边三角形的性质是解答此题的关键.22.(12分)某小区为更好的提高业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买3个温馨提示牌和4个垃圾箱共需580元,且每个温馨提示牌比垃圾箱便宜40元.(1)问购买1个温馨提示牌和1个垃圾箱各需多少元?(2)如果需要购买温馨提示牌和垃圾箱共100个,费用不超过8000元,问最多购买垃圾箱多少个?【分析】(1)根据题意可得方程组,根据解方程组,可得答案;(2)根据费用不超过8000元,可得不等式,根据解不等式,可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台大学《学术英语写作》2022-2023学年第一学期期末试卷
- 音响设备租赁承包合同三篇
- 烟台大学《计算机网络与通信实验》2021-2022学年第一学期期末试卷
- 五年级数学(小数除法)计算题专项练习及答案汇编
- 四年级数学(上)计算题专项练习及答案汇编
- 徐州工程学院《数字图像处理技术》2023-2024学年第一学期期末试卷
- 公司项目管理制度(上墙版)
- 纺织行业会计个人工作计划
- 邢台学院《陶瓷基础》2021-2022学年第一学期期末试卷
- 信阳师范大学《咨询心理学》2022-2023学年第一学期期末试卷
- 地源热泵专项施工方案(完整资料)
- 圆锥曲线的离心率教学设计
- 世杰同层排水图册
- 粤教版2019高中信息技术必修一、必修二学业水平测试题附答案
- JJF 1059.1-2012测量不确定度评定与表示
- GB/T 37546-2019无人值守变电站监控系统技术规范
- GB/T 28708-2012管道工程用无缝及焊接钢管尺寸选用规定
- GB/T 17505-2016钢及钢产品交货一般技术要求
- 提高小学高段数学简便运算能力的教学策略
- CB/T 495-1995吸入口
- CMMI-决策分析和决定过程
评论
0/150
提交评论