2025届江苏省姜堰区九上数学开学复习检测模拟试题【含答案】_第1页
2025届江苏省姜堰区九上数学开学复习检测模拟试题【含答案】_第2页
2025届江苏省姜堰区九上数学开学复习检测模拟试题【含答案】_第3页
2025届江苏省姜堰区九上数学开学复习检测模拟试题【含答案】_第4页
2025届江苏省姜堰区九上数学开学复习检测模拟试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2025届江苏省姜堰区九上数学开学复习检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列各点中,在函数y=-图象上的是()A. B. C. D.2、(4分)如图,点P(-3,3)向右平移m个单位长度后落在直线y=2x-1上,则m的值为()A.7 B.6 C.5 D.43、(4分)如图,在正方形中,点为上一点,与交于点,若,则A.60° B.65° C.70° D.75°4、(4分)甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都8环,甲射击成绩的方差是1.2,乙射击成绩的方差是1.8,射击成绩稳定的是()A.甲 B.乙 C.甲、乙一样 D.不能确定5、(4分)在平行四边形ABCD中,AC=10,BD=6,则边长AB,AD的可能取值为().A.AB=4,AD=4 B.AB=4,AD=7 C.AB=9,AD=2 D.AB=6,AD=26、(4分)某服装销售商在进行市场占有率的调查时,他最应该关注的是()A.服装型号的平均数 B.服装型号的众数C.服装型号的中位数 D.最小的服装型号7、(4分)如图,△ABC中,∠C=900,∠CAB=600,AD平分∠BAC,点D到AB的距离DE=3cm,则BC等于()A.3cm B.6cm C.9cm D.12cm8、(4分)化简正确的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),若线段AB与x轴有交点,则m的取值范围是_____.10、(4分)小明租用共享单车从家出发,匀速骑行到相距米的图书馆还书.小明出发的同时,他的爸爸以每分钟米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了分钟后沿原路按原速返回.设他们出发后经过(分)时,小明与家之间的距离为(米),小明爸爸与家之间的距离为(米),图中折线、线段分别表示、与之间的函数关系的图象.小明从家出发,经过___分钟在返回途中追上爸爸.11、(4分)甲、乙两人进行跳高训练时,在相同条件下各跳5次的平均成绩相同.若=0.5,=0.4,则甲、乙两人的跳高成绩较为稳定的是______.12、(4分)如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT的长为_____.13、(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E,若AB=8,AD=6,则EC=_____________.三、解答题(本大题共5个小题,共48分)14、(12分)解不等式组:,并把解集表示在数轴上.15、(8分)如图,△ABC中,D、E分别是AB、AC的中点,延长DE至点F,使EF=DE,连接CF.证明:四边形DBCF是平行四边形.16、(8分)某幼儿园打算在六一儿童节给小朋友买礼物,计划用元购买一定数量的棒棒糖,商店推出优惠,购买达到一定数量之后,购买总金额打八折,此时,王老师发现,花元可以买到计划数量的倍还多个,棒棒糖的原单价是多少?17、(10分)在Rt△ABC中,∠C=90°,AC=6,BC=1.在CB上找一点E,使EB=EA(利用尺规作图,保留作图痕迹),并求出此时CE的长.18、(10分)已知一个三角形的三边长分别为,求这个三角形的周长(要求结果化简).B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:(Ⅰ)该地区出租车的起步价是_____元;(Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式_____.20、(4分)如图所示,在矩形ABCD中,DE⊥AC于E,∠ADE:∠EDC=3:2,则∠BDE的度数是_____.21、(4分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是__.22、(4分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,CE=4,则四边形ACEB的周长为▲.23、(4分)若二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上,则m=.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是()①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.A.1个 B.2个 C.3个 D.4个25、(10分)在的正方形网格中(每个小正方形的边长为1),线段在网格中位置如图.(1)______;(2)请画出一个,其中在格点上,且三边均为无理数;(3)画出一个以为边,另两个顶点、也在格点上的菱形,其面积是______.26、(12分)在平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于A、B两点,直线BC交x轴负半轴于点C,∠BCA=30°,如图①.(1)求直线BC的解析式.(2)在图①中,过点A作x轴的垂线交直线CB于点D,若动点M从点A出发,沿射线AB方向以每秒个单位长度的速度运动,同时,动点N从点C出发,沿射线CB方向以每秒2个单位长度的速度运动,直线MN与直线AD交于点S,如图②,设运动时间为t秒,当△DSN≌△BOC时,求t的值.(3)若点M是直线AB在第二象限上的一点,点N、P分别在直线BC、直线AD上,是否存在以M、B、N、P为顶点的四边形是菱形.若存在,请直接写出点M的坐标;若不存在,请说明理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

把各点代入解析式即可判断.【详解】A.∵(-2)×(-4)=8≠-6,∴此点不在反比例函数的图象上,故本选项错误;B.∵2×3=6≠-6,∴此点不在反比例函数的图象上,故本选项错误;C.∵(-1)×6=-6,∴此点在反比例函数的图象上,故本选项正确;D.∵×3=-≠-6,∴此点不在反比例函数的图象上,故本选项错误.故选C.此题主要考查反比例函数的图像,解题的关键是将各点代入解析式.2、C【解析】

利用一次函数图象上点的坐标特征求出点P平移后的坐标,结合点P的坐标即可求出m的值.【详解】解:当y=3时,2x-1=3,解得:x=2,∴m=2-(-3)=1.故选:C.本题考查一次函数图象上点的坐标特征以及坐标与图形变化-平移,利用一次函数图象上点的坐标特征求出点P平移后的坐标是解题的关键.3、C【解析】

先证明△ABE≌△ADE,得到∠ADE=∠ABE=90°﹣25°=65°,在△ADE中利用三角形内角和180°可求∠AED度数.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,BA=DA,∠BAE=∠DAE=45°.又AE=AE,∴△ABE≌△ADE(SAS).∴∠ADE=∠ABE=90°﹣25°=65°.∴∠AED=180°﹣45°﹣65°=70°.故选:C.本题主要考查了正方形的性质,解决正方形中角的问题一般会涉及对角线平分对角成45°.4、A【解析】

根据方差的概念判断即可.【详解】在平均数相同的情况下,方差小的更稳定,故选A.本题考查方差的意义,关键在于牢记方差的概念.5、B【解析】

利用平行四边形的性质知,平行四边形的对角线互相平分,再结合三角形三边关系分别进行分析即可.【详解】解:因为:平行四边形ABCD,AC=10,BD=6,所以:OA=OC=5,OB=OD=3,所以:,所以:C,D错误,又因为:四边形ABCD是平行四边形,∴AD=BC、∵AD=4,∴BC=4,∵AB=4,AC=10,∴AB+BC<AC,∴不能组成三角形,故此选此选项错误;因为:AB=4,AD=7,所以:三角形存在.故选B.本题考查平行四边形的性质及三角形的三边关系,掌握平行四边形的性质和三角形三边关系是解题关键.6、B【解析】分析:天虹百货某服装销售商最感兴趣的是服装型号的销售量哪个最大.解答:解:由于众数是数据中出现最多的数,销售商最感兴趣的是服装型号的销售量哪个最大,所以他最应该关注的是众数.故选B7、C【解析】

根据直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据BC=BD+CD计算即可得解.【详解】解:∵∠C=90°,∠CAB=60°,

∴∠B=90°-60°=30°,

∵DE⊥AB,

∴BD=2DE=2×3=6cm,

∵AD平分∠BAC,∠C=90°,DE⊥B,

∴CD=DE=3cm,

∴BC=BD+CD=6+3=9cm.

故选:C.本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形两锐角互余的性质以及直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图是解题的关键.8、D【解析】【分析】先根据二次根式有意义的条件确定出x<0,然后再根据二次根式的性质进行化简即可得答案.【详解】由题意可知x<0,所以=,故选D.【点睛】本题考查了二次根式的性质与化简,熟知二次根式的被开方数是非负数、熟练掌握二次根式的性质是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、﹣2≤m≤1【解析】

由点的坐标特征得出线段AB∥y轴,当直线y=1经过点A时,得出m=1;当直线y=1经过点B时,得出m=﹣2;即可得出答案.【详解】解:∵点A、B的坐标分别为(3,m)、(3,m+2),∴线段AB∥y轴,当直线y=1经过点A时,则m=1,当直线y=1经过点B时,m+2=1,则m=﹣2;∴直线y=1与线段AB有交点,则m的取值范围为﹣2≤m≤1;故答案为﹣2≤m≤1.本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.10、1.【解析】

用路程除以时间就是小亮骑自行车的速度;设小亮从家出发,经过x分钟,在返回途中追上爸爸,再由题意得出等量关系除了小亮在图书馆停留2分钟,即x-2分钟所走的路程减去小亮从家到图书馆相距的2400米,就是小亮在返回途中追上爸爸时,爸爸所走的路程,列出方程即可解答出来【详解】解:小亮骑自行车的速度是2400÷10=240m/min;

先设小亮从家出发,经过x分钟,在返回途中追上爸爸,由题意可得:

(x-2)×240-2400=96x

240x-240×2-2400=96x

144x=2880

x=1.

答:小亮从家出发,经过1分钟,在返回途中追上爸爸.此题考查一次函数的实际运用,根据图象,找出题目蕴含的数量关系,根据速度、时间、路程之间关系解决问题.11、乙【解析】

根据在平均成绩相同的情况下,方差越小,成绩越稳定即可得出结论.【详解】解:∵0.5>0.4∴S甲2>S乙2,则成绩较稳定的同学是乙.故答案为:乙.此题考查的是利用方差做决策,掌握方差越小,数据越稳定是解决此题的关键.12、2【解析】

根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.【详解】∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,∴∠ADB=∠CGE=45°,∴∠GDT=180°−90°−45°=45°,∴∠DTG=180°−∠GDT−∠CGE=180°−45°−45°=90°,∴△DGT是等腰直角三角形,∵两正方形的边长分别为4,8,∴DG=8−4=4,∴GT=×4=2.故答案为2.本题考查了正方形的性质,等腰直角三角形的判定与性质.关键是掌握正方形的对角线平分一组对角13、【解析】

连接EA,如图,利用基本作图得到MN垂直平分AC,所以EC=EA,设CE=x,则AE=x,DE=8-x,根据勾股定理得到62+(8-x)2=x2,然后解方程求出x即可.【详解】解:连接EA,如图,由作图得到MN垂直平分AC,∴EC=EA,∵四边形ABCD为矩形,∴CD=AB=8,∠D=90°,设CE=x,则AE=x,DE=8-x,在Rt△ADE中,62+(8-x)2=x2,解得x=,即CE的长为.故答案为.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.三、解答题(本大题共5个小题,共48分)14、-2≤x<2【解析】

先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【详解】解:∵解不等式①得:x<2,解不等式②得:x≥-2,∴不等式组的解集为-2≤x<2,在数轴上表示为:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集等知识点,能求出不等式组的解集是解此题的关键.15、证明见解析.【解析】分析:根据中位线的性质得出,结合DE=EF,从而得出DF和BC平行且相等,从而得出答案.详解:证明:∵D、E分别是AB、AC的中点,∴DE=BC,DE∥BC,又EF=DE,∴DF=DE+EF=BC,∴四边形DBCF是平行四边形.点睛:本题主要考查的是三角形中位线的性质以及平行四边形的判定定理,属于中等难度题型.了解中位线的性质是解决这个问题的关键.16、棒棒糖的原单价为3元.【解析】【分析】设棒棒糖的原单价是x元,由等量关系“优惠后,花480元可以买到计划数量的2倍还多20个”,列出方程,解方程进行检验后即可得答案.【详解】设棒棒糖的原单价为x元,根据题意,得:×2+20=,解得:x=3,经检验:x=3是原方程的根,答:棒棒糖的原单价为3元.【点睛】本题考查了分式方程的应用,弄清题意,找出等量关系列出方程是解题的关键.17、CE=【解析】

作AB的垂直平分线交BC于E,则根据线段垂直平分线的性质得到EA=EB,设CE=x,则EA=EB=1-x,利用勾股定理得到62+x2=(1-x)2,然后解方程即可.【详解】如图,点E为所作;设CE=x,则EA=EB=1-x,在Rt△AEC中,∵AC2+CE2=AE2,∴62+x2=(1-x)2,解得x=,即CE=.本题考查了作图,线段垂直平分线的性质,勾股定理,熟练掌握线段垂直平分线的性质以及勾股定理的内容是解题的关键.18、.【解析】

根据题目中的数据可以求得该三角形的周长【详解】解:∵这个三角形的三边长分别为:,∴这个三角形的周长是:=.本题考查二次根式的性质与化简,解答本题的关键是明确二次根式的意义.一、填空题(本大题共5个小题,每小题4分,共20分)19、8y=1x+1.【解析】

(Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,(Ⅱ)利用待定系数法求出一次函数解析式即可.【详解】(Ⅰ)该城市出租车3千米内收费8元,即该地区出租车的起步价是8元;(Ⅱ)依题意设y与x的函数关系为y=kx+b,∵x=3时,y=8,x=8时,y=18;∴,解得;所以所求函数关系式为:y=1x+1(x>3).故答案为:8;y=1x+1.此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.20、18°【解析】

根据矩形的性质及角度的关系即可求解.【详解】∵,∠ADC=90°,∴∠EDC=36°,∵∴∠DCE=54°,∵CO=DO,∴∠ODC=∠DCE=54°,∴=∠ODC-∠EDC=18°此题主要考查矩形的性质,解题的关键是熟知继续对角线互相平分且相等.21、【解析】试题分析:首先设点P的坐标为(x,y),根据矩形的周长可得:2(x+y)=10,则y=-x+5,即该直线的函数解析式为y=-x+5.22、10+.【解析】先证明四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.∵∠ACB=90°,DE⊥BC,∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=1.在Rt△CDE中,DE=1,CE=2,由勾股定理得.∵D是BC的中点,∴BC=1CD=2.在△ABC中,∠ACB=90°,由勾股定理得.∵D是BC的中点,DE⊥BC,∴EB=EC=2.∴四边形ACEB的周长=AC+CE+EB+BA=10+.23、1【解析】试题分析:由二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上知,该二次函数的对称轴是直线x=0,根据二次函数对称轴的公式x=-b-2m-1=0考点:二次函数对称轴点评:本题属于简单的公式应用题,相对来说比较简单,但是仍然要求学生对相应的公式牢记并理解,注意公式中各字母表示的含义。二、解答题(本大题共3个小题,共30分)24、B【解析】

由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;③不正确;即可得出结果.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选B.本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.25、(1)AB=(2)图形见解析(3)6【解析】

(1)根据格点图形的性质,结合勾股定理即可解题,(2)图形如下图,答案不唯一,(3)答案不唯一,根据菱形的对角线互相垂直平分是作出菱形的关键,菱形的面积可以根据对角线乘积的一半进行求解.【详解】(1)AB=(2)如下图,(3)如上图,AD=6,BC=2,∴菱形ABCD的面积=本题考查了网格图的特征,菱形的性质和面积的求法,属于简单题,熟悉菱形对角线互相垂直平分的性质是解题关键26、(1)y=x+2;(2),t=秒或t=+4秒时,△DSN≌△BOC;(3)M(+4)或M()或M().【解析】

(1)求出B,C的坐标,由待定系数法可求出答案;(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.分两种情况:(Ⅰ)当点M在线段AB上运动时,(Ⅱ)当点M在线段AB的延长线上运动时,由DS=BO=2,可得出t的方程,解得t的值即可得出答案;(3)设点M(a,﹣a+2),N(b,),P(2,c),点B(0,2),分三种情况:(Ⅰ)当以BM,BP为邻边构成菱形时,(Ⅱ)当以BP为对角线,BM为边构成菱形时,(Ⅲ)当以BM为对角线,BP为边构成菱形时,由菱形的性质可得出方程组,解方程组即可得出答案.【详解】解:(1)∵直线y=﹣x+2与x轴、y轴分别交于A、B两点,∴x=0时,y=2,y=0时,x=2,∴A(2,0),B(0,2),∴OB=AO=2,在Rt△COB中,∠BOC=90°,∠BCA=30°,∴OC=2,∴C(﹣2,0),设直线BC的解析式为y=kx+b,代入B,C两点的坐标得,,∴k=,b=2,∴直线BC的解析式为y=x+2;(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.(Ⅰ)如图1,当点M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论