2025届济宁市高中学段学校数学九年级第一学期开学学业水平测试模拟试题【含答案】_第1页
2025届济宁市高中学段学校数学九年级第一学期开学学业水平测试模拟试题【含答案】_第2页
2025届济宁市高中学段学校数学九年级第一学期开学学业水平测试模拟试题【含答案】_第3页
2025届济宁市高中学段学校数学九年级第一学期开学学业水平测试模拟试题【含答案】_第4页
2025届济宁市高中学段学校数学九年级第一学期开学学业水平测试模拟试题【含答案】_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届济宁市高中学段学校数学九年级第一学期开学学业水平测试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,矩形ABCD中,CD=6,E为BC边上一点,且EC=2将△DEC沿DE折叠,点C落在点C'.若折叠后点A,C',E恰好在同一直线上,则AD的长为(

)A.8

B.9

C.485

D.102、(4分)方差是表示一组数据的A.变化范围 B.平均水平 C.数据个数 D.波动大小3、(4分)直线与在同一平面直角坐标系中的图象如图所示,则关于x的不等式的解集为()A.x>﹣2 B.x<﹣2 C.x≥﹣1 D.x<﹣14、(4分)若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是A.6cm B.5cm C. D.5、(4分)如图所示,正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB,AC于点E,G,连接GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数有()A.2个 B.4个 C.3个 D.5个6、(4分)已知,下列不等式中错误的是()A. B. C. D.7、(4分)如图,菱形中,点、分别是、的中点,若,,则的长为()A. B. C. D.8、(4分)16的值为()A.±4 B.±8 C.4 D.8二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)数据15、19、15、18、21的中位数为_____.10、(4分)一名主持人站在舞台的黄金分割点处最自然得体,如果舞台AB长为20m,这名主持人现在站在A处(如图所示),则它应至少再走_____m才最理想.(可保留根号).11、(4分)若,则=______12、(4分)在平面直角坐标系中,将点向右平移3个单位所对应的点的坐标是__________.13、(4分)如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AB、BC边的中点,连接EF,若EF=,BD=4,则菱形ABCD的边长为__________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在等腰中,,D为底边BC延长线上任意一点,过点D作,与AC延长线交于点E.则的形状是______;若在AC上截取,连接FB、FD,判断FB、FD的数量关系,并给出证明.15、(8分)如图,G是线段AB上一点,AC和DG相交于点E.(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.16、(8分)为了调查甲,乙两台包装机分装标准质量为奶粉的情况,质检员进行了抽样调查,过程如下.请补全表一、表二中的空,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:)如下:甲:394,400,408,406,410,409,400,400,393,395乙:402,404,396,403,402,405,397,399,402,398整理数据:表一频数种类质量()甲乙____________003310________________________130分析数据:表二种类甲乙平均数401.5400.8中位数____________402众数400____________方差36.858.56得出结论:包装机分装情况比较好的是______(填甲或乙),说明你的理由.17、(10分)如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.18、(10分)如图,已知点A的坐标为(a,4)(其中a<-3),射线OA与反比例函数的图象交于点P,点B,C分别在函数的图象上,且AB∥x轴,AC∥y轴,连结BO,CO,BP,CP.(1)当a=-6,求线段AC的长;(2)当AB=BO时,求点A的坐标;(3)求证:.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如果关于的不等式组的整数解仅有,,那么适合这个不等式组的整数,组成的有序数对共有_______个;如果关于的不等式组(其中,为正整数)的整数解仅有,那么适合这个不等式组的整数,组成的有序数对共有______个.(请用含、的代数式表示)20、(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,则k=_______.21、(4分)如图,矩形的顶点分别在反比例函数的图像上,顶点在轴上,则矩形的面积是______.22、(4分)如图,P是反比例函数图象上的一点,轴于A,点B,C在y轴上,四边形PABC是平行四边形,则▱PABC的面积是______.23、(4分)若平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为_________________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G.F为AB边上一点,连接CF,且∠ACF=∠CBG.(1)求证:BG=CF;(2)求证:CF=2DE;(3)若DE=1,求AD的长25、(10分)如图,在四边形中,,,,是的中点.点以每秒个单位长度的速度从点出发,沿向点运动;点同时以每秒个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动.当运动时间为多少秒时,以点,,,为顶点的四边形是平行四边形.26、(12分)如图,在△ABC中,D、E、F分别为边AB、BC、CA的中点.(1)求证:四边形DECF是平行四边形.(2)当AC、BC满足何条件时,四边形DECF为菱形?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

在Rt△DEC中,由勾股定理可得DE的长.设AD=x,则BE=x-1,AB=DC=C'D.由Rt△AC'D≌△EBA,得到BE=AC'=x-1.在Rt△AC'D中,由勾股定理即可得出结论.【详解】解:如图,由勾股定理得:DE=DC设AD=x,则BE=x-1,AB=DC=C'D.∵AD∥BE,∴∠DAE=∠AEB,∴Rt△AC'D≌△EBA(AAS),∴BE=AC'=x-1.在Rt△AC'D中,由勾股定理得:AD1=AC'1+C'D1,即x1=(x-1)1+61,解得:x=2,即AD=2.故选D.本题考查了矩形与折叠.证明Rt△AC'D≌△EBA是解答本题的关键.2、D【解析】

根据方差的意义进行求解即可得.【详解】方差是用来表示一组数据波动大小的量,故选D.本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,通常用s2表示,其公式为S2=[(x1-)2+(x2-)2+…+(xn-)2](其中n是样本容量,表示平均数).方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3、C【解析】

根据函数图象交点左侧直线y=kx+b图象在直线y=mx图象的下面,即可得出不等式kx+b≤mx的解集.【详解】解:由图可知,在x≥-1时,直线y=mx在直线y=kx+b上方,关于x的不等式kx+b≤mx的解是x≥-1.

故选:C.本题考查了一次函数与一元一次不等式:观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.4、B【解析】

∵菱形的两条对角线分别为5cm和10cm,∴菱形的面积为:(cm2),设正方形的边长为cm,则,解得:(cm).故选B.5、C【解析】

根据四边形ABCD为正方形,以及折叠的性质,可以直接得到∠ADG的角度,以及AE=FE,在△BEF中,EF<BE,可以得到2AE<AB,结合三角函数的定义对②作出判断;在△AGD和△OGD中高相等,底不同,可以直接判断其大小,而四边形AEFG是菱形的判定需证得AE=EF=GF=AG;要计算OG和BE的关系,我们需利用到中间量EF,即四边形AEFG的边长,可以转化出BE和OG的关系;当已知△OGF的面积时,根据菱形的性质,可以求得OG的长,进而求出BE的长度,而AE的长度与GF相同,GF可由勾股定理得出,进而求出AB的长度,正方形ABCD的面积也出来了.【详解】∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°.由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确;∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2.故②错误;∵∠AOB=90°,∴AG=FG>OG.∵△AGD与△OGD同高,∴S△AGD>S△OGD.故③错误;∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE.∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF.∵AE=EF,∴AE=GF.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,故④正确;∵四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确;∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF是等腰直角三角形.∵S△OGF=1,∴OG=1,解得OG=,∴BE=2OG=2,GF=,∴AE=GF=2,∴AB=BE+AE=2+2,∴S四边形ABCD=AB=(2+2)=12+8.故⑥错误.∴其中正确结论的序号是①④⑤,共3个.故选C.此题考查正方形的性质,折叠的性质,菱形的性质,三角函数,解题关键在于掌握各性质定理6、D【解析】

不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.【详解】解:∵a<b,∴3a<3b,A选项正确;a+5<b+5,B选项正确;a-5<b-5,C选项正确;-3a>-3b,D选项错误;故选:D.本题主要考查不等式的性质,主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7、A【解析】

由菱形的性质可得AC⊥BD,AO=CO=3,BO=DO,由勾股定理可求BO=4,可得BD=8,由三角形中位线定理可求EF的长【详解】解:如图,连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=3,BO=DO,∴,∴BD=2BO=8,∵点E、F分别是AB、AD的中点,∴EF=BD=4,故选:A.本题考查了菱形的性质,三角形中位线定理,本题中根据勾股定理求OB的值是解题的关键.8、C【解析】

16表示16的算术平方根,根据二次根式的意义解答即可.【详解】16=故选C.主要考查了二次根式的化简.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

将这五个数排序后,可知第3位的数是1,因此中位数是1.【详解】将这组数据排序得:15,15,1,19,21,处于第三位是1,因此中位数是1,故答案为:1.考查中位数的意义和求法,将一组数据排序后处在中间位置的一个数或两个数的平均数是中位数.10、(30﹣10)【解析】

AB的黄金分割点有两个,一种情况是AC<BC,一种是AC>BC,当AC<BC时走的路程最小,由此根据黄金分割的意义进行求解即可.【详解】如图所示:则,即(20−AC):20=(−1):2,解得AC=30−10.∴他应至少再走30−10米才最理想,故答案为:30−10.本题考查黄金分割的知识,熟练掌握黄金分割比例即可解答.11、【解析】

设=k,同x=2k,y=4k,z=5k,再代入中化简即可.【详解】设=k,x=2k,y=4k,z=5k=.故答案是:.考查的是分式化简问题,利用比例性质通过设未知数的方式,代入分式化简可以求解.12、【解析】

根据平移的性质得出所对应的点的横坐标是1+3,纵坐标不变,求出即可.【详解】解:∵在平面直角坐标系中,将点向右平移3个单位,∴所对应的点的横坐标是1+3=4,纵坐标不变,∴所对应的点的坐标是,故答案为:.本题主要考查对坐标与图形变化-平移的理解和掌握,能根据平移性质进行计算是解此题的关键.13、【解析】

先根据三角形中位线定理求AC的长,再由菱形的性质求出OA,OB的长,根据勾股定理求出AB的长即可.【详解】∵E、F分别是AB、BC边的中点,∴EF是△ABC的中位线∵EF=,∴AC=2.∵四边形ABCD是菱形,BD=4,∴AC⊥BD,OA=AC=,OB=BD=2,∴.故答案为:.此题考查菱形的性质、三角形中位线定理,解题关键在于熟练运用利用菱形的性质.三、解答题(本大题共5个小题,共48分)14、(1)等腰三角形;.【解析】

根据等腰三角形的性质得到,求得,根据全等三角形的性质得到,于是得到结论;根据平行线的性质得到,根据全等三角形的性质即可得到结论【详解】是等腰三角形,理由:,,,,,,是等腰三角形;故答案为:等腰三角形;,理由:,,,,,即,在与中,≌,.本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.15、(1)见解析;(2)见解析.【解析】

(1)根据角平分线的作图方法作图即可;(2)由题意易证△ADE≌△CBF推出DE=BF.【详解】(1)解:以B为圆心、适当长为半径画弧,交AB、BC于M、N两点,分别以M、N为圆心、大于MN长为半径画弧,两弧相交于点P,过B、P作射线BF交AC于F.(2)证明如下:∵AD∥BC,∴∠DAC=∠C.∵BF平分∠ABC,∴∠ABC=2∠FBC,又∵∠ABC=2∠ADG,∴∠D=∠FBC,在△ADE与△CBF中,,∴△ADE≌△CBF(ASA),∴DE=BF.本题考查的是全等三角形的判定定理以及基本作图的有关知识,难度一般.16、整理数据:3,1,5;分析数据:400,402;得出结论:乙,理由详见解析.【解析】

整理数据:根据所给的数据填写表格一即可;分析数据:根据中位数、众数的定义求解即可;得出结论:结合表二中的数据解答即可.【详解】整理数据:表一中,甲组:393≤x<396的有3个,405≤x<408的有1个;乙组:402≤x<405的有5个;故答案为:3,1,5;分析数据:表二中,甲组:把10个数据按照从小到大顺序排列为:393,394,395,400,400,400,406,408,409,410,中位数为中间两个数据的平均数==400,乙组:出现次数最多的数据是402,∴众数是402;故答案为:400,402;得出结论:包装机分装情况比较好的是乙;理由如下:由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.故答案为:乙(答案不唯一,合理即可).本题考查了众数、中位数以及方差,掌握众数、中位数以及方差的定义及数据的整理是解题的关键.17、(1)见解析;(2)【解析】

(1)连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的切线;(2)由∠ACD的度数求出∠OCA为60°,确定出三角形AOC为等边三角形,由半径为2求出AC的长,在直角三角形ACD中,由30度所对的直角边等于斜边的一半求出AD的长,再利用勾股定理求出CD的长,由扇形AOC面积减去三角形AOC面积求出弓形的面积,再由三角形ACD面积减去弓形面积即可求出阴影部分面积.【详解】(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵∠DAC=∠BAC,∴∠DAC=∠OCA,∴AD∥OC,∵AD⊥EF,∴OC⊥EF,则EF为圆O的切线;(2)∵∠ACD=30°,∠ADC=90°,∴∠CAD=∠OCA=60°,∴△AOC为等边三角形,∴AC=OC=OA=2,在Rt△ACD中,∠ACD=30°,∴AD=AC=1,根据勾股定理得:CD=,∴S阴影=S△ACD-(S扇形AOC-S△AOC)=×1×-()=.考点:1.切线的判定;2.扇形面积的计算.18、(1);(2);(3)见解析【解析】

(1)当时,由于轴,所以点的横坐标也为-6,将点的横坐标代入反比例函数解析式即可求得点的坐标,利用两点间的距离公式即可求得的长;(2)根据轴.可以得到点和点的纵坐标相同,由此根据反比例函数解析式即可求得点的坐标,所以的长度可以求出,再结合,求出点的坐标;(3)分别延长交轴于点,延长交轴于点,根据轴,轴,可以证得四边形为矩形,所以,而根据反比例函数的性质可得,所以,利用面积关系即可得到,从而得到证明;【详解】解:(1)∵轴,∴点、的横坐标相等.∴点的坐标.∴.(2)∵轴,∴点、的纵坐标相等,∴点的坐标.∴.∴点.(3)延长交轴于点,延长交轴于点,连接.∴轴,轴,∴四边形为平行四边形.又∵,∴平行四边形为矩形.∴.又,∵.又∵,,∴.∴.本题主要考查反比例函数的面积关系,熟练掌握反比例函数中的几何意义是解决本题的关键,难度中等,需要仔细分析图形.一、填空题(本大题共5个小题,每小题4分,共20分)19、6pq【解析】

(1)求出不等式组的解集,根据不等式组的解集和已知得出,,求出ab的值,即可求出答案;(2)求出不等式组的解集,根据不等式组的解集和已知得出,,即,;结合p,q为正整数,d,e为整数可知整数d的可能取值有p个,整数e的可能取值有q个,即可求解.【详解】解:(1)解不等式组,得不等式组的解集为:,∵关于的不等式组的整数解仅有1,2,∴,,∴4≤b<6,0<a≤3,

即b的值可以是4或5,a的值是1或2或3,

∴适合这个不等式组的整数a,b组成的有序数对(a,b)可能是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),

∴适合这个不等式组的整数a,b组成的有序数对(a,b)共6个;(2)解不等式组(其中,为正整数),解得:,∵不等式组(其中p,q为正整数)的整数解仅有c1,c2,…,cn(c1<c2<…<cn),∴,,∴,,∵p,q为正整数

∴整数d的可能取值有p个,整数e的可能取值有q个,

∴适合这个不等式组的整数d,e组成的有序数对(d,e)共有pq个;

故答案为:6;pq.本题考查了一元一次不等式组的整数解,解题的关键是掌握解一元一次不等式组的一般步骤.20、-5【解析】

根据“点P(1,2)关于x轴的对称点为P′”求出点P′的坐标,再将其代入y=kx+3,即可求出答案.【详解】∵点P(1,2)关于x轴的对称点为P′∴点P′坐标为(1,-2)又∵点P′在直线y=kx+3上∴-2=k+3解得k=-5,故答案为-5.本题考查的是坐标对称的特点与一次函数的知识,能够求出点P′坐标是解题的关键.21、3【解析】

延长CD与y轴交于E,可得矩形OBCE,所以,矩形的面积=矩形OBCE的面积-矩形OADE的面积.【详解】延长CD与y轴交于E,可得矩形OBCE,所以,矩形的面积=矩形OBCE的面积-矩形OADE的面积因为矩形的顶点分别在反比例函数的图像上,所以矩形OBCE的面积=6,矩形OADE的面积=3所以矩形的面积=6-3=3故答案为:3考查反比例函数k的几何意义,即过反比例函数图象上一点,分别向x轴、y轴作垂线,与坐标轴围成的矩形的面积等于|k|.22、6【解析】

作PD⊥BC,所以,设P(x,y).由,得平行四边形面积=BC•PD=xy.【详解】作PD⊥BC,所以,设P(x,y).由,得平行四边形面积=BC•PD=xy=6.故答案为:6本题考核知识点:反比例函数意义.解题关键点:熟记反比例函数的意义.23、(2,-1)【解析】

可先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【详解】∵M到x轴的距离为1,到y轴的距离为2,∴M纵坐标可能为±1,横坐标可能为±2,∵点M在第四象限,∴M坐标为(2,-1).故答案为:(2,-1).本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.二、解答题(本大题共3个小题,共30分)24、(1)详见解析;(2)详见解析;(3)【解析】

(1)利用“ASA”判断△BCG≌△CFA,从而得到BG=CF;(2)连结AG,利用等腰直角三角形的性质得CG垂直平分AB,则BG=AG,再证明∠D=∠GAD得到AG=DG,所以BG=DG,接着证明△ADE≌△CGE得到DE=GE,则BG=2DE,利用利用△BCG≌△CFA得到CF=BG,于是有CF=2DE;(3)先得到BG=2,GE=1,则BE=3,设CE=x,则BC=AC=2CE=2x,在Rt△BCE中利用勾股定理得到x+(2x)=3,解得x=,所以BC=,AB=BC=,然后在Rt△AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论