版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届湖南省武冈市洞庭学校九上数学开学预测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知y1x5,y22x1.当y1y2时,x的取值范围是()A.x5 B.x12 C.x6 D.x2、(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形 B.等腰梯形 C.正方形 D.平行四边形3、(4分)若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y1<y24、(4分)如图,在中,,点是边上一点,,则的大小是()A.72° B.54° C.38° D.36°5、(4分)四边形的对角线相交于点,且,那么下列条件不能判断四边形为平行四边形的是()A. B. C. D.6、(4分)如图,已知直线y=3x+b与y=ax-2的交点的横坐标为,根据图象有下列3个结论:①a>0;②b<0;③x>-2是不等式
3x+b>ax-2的解集其中正确的个数是()A.0, B.1, C.2, D.37、(4分)方程3+9=0的根为()A.3 B.-3 C.±3 D.无实数根8、(4分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)化简:=______.10、(4分)已知x+y=﹣1,xy=3,则x2y+xy2=_____.11、(4分)在某校举行的“汉字听写”大赛中,六名学生听写汉字正确的个数分别为:35,31,32,31,35,31,则这组数据的众数是_____.12、(4分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.13、(4分)甲,乙两人进行飞镖比赛,每人各投1次,甲的成绩(单位:环)为:9,8,9,1,10,1.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是______.(填“甲”或“乙”)三、解答题(本大题共5个小题,共48分)14、(12分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.15、(8分)先化简,再求值:(x+2+3x+4x-2)÷x2+6x+9x-216、(8分)(1)计算:﹣+×(2)解方程:3x(x+4)=2(x+4)17、(10分)图①,图②均是的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A在格点上.试在网格中画出顶点在格点上,面积为6,且符合相应条件的图形.(1)在图①中,画出以点A为顶点的非特殊的平行四边形.(2)在图②中,画出以点A为对角线交点的非特殊的平行四边形.18、(10分)某水果批发市场规定,批发苹果不少于100千克时,批发价为每千克3.5元,小王携带现金7000元到这市场购苹果,并以批发价买进.如果购买的苹果为x千克,小王付款后的剩余现金为y元(1)写出y关于x的函数关系式,并写出自变量x的取值范围;(2)若小王购买800千克苹果,则小王付款后剩余的现金为多少元?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)平行四边形ABCD中,∠A-∠B=20°,则∠A=______,∠B=_______.20、(4分)如图,长方形ABCD的边AB在x轴上,且AB的中点与原点重合,AB=2,AD=1,直线y=-x+b与矩形ABCD的边有公共点,则实数b的取值范围是________.21、(4分)如图,矩形的边分别在轴、轴上,点的坐标为。点分别在边上,。沿直线将翻折,点落在点处。则点的坐标为__________。22、(4分)如图,菱形ABCD的两条对角线长分别为6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点则PM+PN的最小值是_23、(4分)甲、乙两人进行跳高训练时,在相同条件下各跳5次的平均成绩相同.若=0.5,=0.4,则甲、乙两人的跳高成绩较为稳定的是______.二、解答题(本大题共3个小题,共30分)24、(8分)已知直线y=﹣3x+6与x轴交于A点,与y轴交于B点.(1)求A,B两点的坐标;(2)求直线y=﹣3x+6与坐标轴围成的三角形的面积.25、(10分)如图,A,B两点的坐标分别为(3,0)、(0,2),将线段AB平移至A1B1,且A1(5,b)、B1(a,3).(1)将线段A1B1绕点A1顺时针旋转60°得线段A1B2,连接B1B2得△A1B1B2,判断△A1B1B2的形状,并说明理由;(2)求线段AB平移到A1B1的距离是多少?26、(12分)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P1(0,0),P2(-1,1),P3(3,2)中,原点正方形的友好点是__________;②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;(2)乙次函数y=-x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
由题意得到x-5>2x+1,解不等式即可.【详解】∵y1>y2,∴x−5>2x+1,解得x<−6.故选C.此题考查一次函数与一元一次不等式,解题关键在于掌握运算法则.2、C【解析】
根据轴对称图形和中心对称图形的概念,即可求解.【详解】解:A、B都只是轴对称图形;C、既是轴对称图形,又是中心对称图形;D、只是中心对称图形.故选:C.掌握好中心对称图形与轴对称图形的概念是解题的关键.3、B【解析】
先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.4、D【解析】
由BD=BC=AD,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC,则∠ABC=∠C=2x,在△ABC中,根据三角形的内角和定理列方程求解.【详解】解:∵BD=BC=AD,
∴设∠A=∠ABD=x,则∠C=∠CDB=2x,
又∵AB=AC,
∴∠ABC=∠C=2x,
在△ABC中,∠A+∠ABC+∠C=180°,
即x+2x+2x=180°,
解得x=36°,
即∠A=36°.
故选:D.本题考查了等腰三角形的性质.关键是利用等腰三角形的等边对等角的性质,三角形外角的性质,三角形内角和定理列方程求解.5、C【解析】
根据题目条件结合平行四边形的判定方法:对角线互相平分的四边形是平行四边形分别进行分析即可.【详解】解:A、加上BO=DO可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;B、加上条件AB∥CD可证明△AOB≌△COD可得BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;C、加上条件AB=CD不能证明四边形是平行四边形,故此选项符合题意;D、加上条件∠ADB=∠DBC可利用ASA证明△AOD≌△COB,可证明BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;故选:C.此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.6、C【解析】
根据一次函数的图象和性质可得a>0;b>0;当x>-2时,直线y=3x+b在直线y=ax-2的上方,即x>-2是不等式3x+b>ax-2的解集.【详解】解:由图象可知,a>0,故①正确;b>0,故②错误;当x>-2,直线y=3x+b在直线y=ax-2的上方,即x>-2是不等式3x+b>ax-2的解集,故③正确.故选:C.本题考查了一次函数的图象和性质以及与一元一次不等式的关系,要熟练掌握.7、D【解析】原方程可化为:,∵负数没有平方根,∴原方程无实数根.故选D.8、C【解析】试题分析:解:选项A、添加AB=DE可用AAS进行判定,故本选项错误;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选C.考点:全等三角形的判定.二、填空题(本大题共5个小题,每小题4分,共20分)9、a+1【解析】
先根据同分母分式加减法进行计算,再约分化简分式即可.【详解】.故答案为a+1本题考核知识点:分式的加减.解题关键点:熟记分式的加减法则,分式的约分.10、-1【解析】
直接利用提取公因式法分解因式,进而把已知数据代入求出答案.【详解】解:∵x+y=﹣1,xy=1,∴x2y+xy2=xy(x+y)=1×(﹣1)=﹣1.故答案为﹣1.本题主要考查了提取公因式法分解因式,正确分解因式是解题的关键.11、1【解析】
利用众数的定义求解.【详解】解:这组数据的众数为1.
故答案为1.本题考查了众数:一组数据中出现次数最多的数据叫做众数.12、50°.【解析】
根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN是AB的垂直平分线,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.13、甲.【解析】
先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.【详解】甲的平均数,所以甲的方差,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为:甲.本题考查方差的定义:一般地设n个数据,,,…,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题(本大题共5个小题,共48分)14、(1)84.5,84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是89.6(分),3号选手的综合成绩是85.2(分),4号选手的综合成绩是90(分),5号选手的综合成绩是81.6(分),6号选手的综合成绩是83(分),综合成绩排序前两名人选是4号和2号.【解析】
(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【详解】(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84;故答案为:84.5,84;(2)设笔试成绩和面试成绩各占的百分百是x,y,根据题意得:,解得:,故笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.15、xx+3,4-23【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后把x的值代入进行计算即可得.【详解】原式=(x2-4=x=x=xx+3当x=23时,原式=2323+3=22+【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.16、(1);(2)x1=,x2=﹣1.【解析】
(1)先化简二次根式,二次根式乘法运算,然后计算加减法;(2)先移项,再用因式分解即可.【详解】解:(1)原式=﹣+2=;(2)由原方程,得(3x﹣2)(x+1)=0,所以3x﹣2=0或x+1=0,解得x1=,x2=﹣1.本题考查的是二次根式的混合运算和方程求解,熟练掌握因式分解和化简是解题的关键.17、(1)见解析;(2)见解析.【解析】
(1)画出底为3,高为2的平行四边形ABCD即可.
(2)利用数形结合的思想解决问题即可.【详解】解:(1)如图,平行四边形ABCD即为所求.
(2)如图,平行四边形EFGH即为所求.图①图②本题考查作图-应用与设计,平行四边形的判定和性质等知识,解题的关键是学会题数形结合的思想思考问题.18、(1)1≤x≤2000;(2)2元.【解析】
(1)利用已知批发价为每千克3.5元,小王携带现金7000元到这个市场购苹果,求得解析式,又因为批发苹果不少于1千克时,批发价为每千克3.5元,所以x≥1.(2)把x=800代入函数解析式即可得到结论.【详解】(1)由已知批发价为每千克3.5元,小王携带现金7000元到这个市场购苹果得y与x的函数关系式:y=7000﹣3.5x,∵批发苹果不少于1千克时,批发价为每千克3.5元,∴x≥1,∴至多可以买7000÷3.5=2000kg,故自变量x的取值范围:1≤x≤2000,.综上所述,y与x之间的函数关系式为:y=7000﹣3.5x(1≤x≤2000);(2)当x=800时,y=7000﹣3.5×800=2.故小王付款后剩余的现金为2元.本题考查了一次函数的应用.利用一次函数性质,解决实际问题,把复杂的实际问题转换为数学问题.一、填空题(本大题共5个小题,每小题4分,共20分)19、100°,80°【解析】
根据平行四边形的性质得出AD∥BC,求出∠A+∠B=180°,解方程组求出答案即可.【详解】解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠A+∠B=180°,
∵∠A-∠B=20°,
∴∠A=100°,∠B=80°,
故答案为:100°,80°.本题考查了平行四边形的性质,能根据平行线得出∠A+∠B=180°是解此题的关键,注意:平行四边形的对边平行.20、−1≤b≤1【解析】
由AB,AD的长度可得出点A,C的坐标,分别求出直线经过点A,C时b的值,结合图象即可得出结论.【详解】解:∵AB=1,AD=1,∴点A的坐标为(−1,0),点C的坐标为(1,1).当直线y=−x+b过点A时,0=1+b,解得:b=−1;当直线y=−x+b过点C时,1=−1+b,解得:b=1.∴当直线y=−x+b与矩形ABCD的边有公共点时,实数b的取值范围是:−1≤b≤1.故答案为:−1≤b≤1.本题考查了一次函数图象上点的坐标特征以及矩形的性质,利用极限值法求出直线经过点A,C时b的值是解题的关键.21、【解析】
由四边形OABC是矩形,BE=BD=1,易得△BED是等腰直角三角形,由折叠的性质,易得∠BEB′=∠BDB′=90°,又由点B的坐标为(3,2),即可求得点B′的坐标.【详解】∵四边形OABC是矩形,∴∠B=90°,∵BD=BE=1,∴∠BED=∠BDE=45°,∵沿直线DE将△BDE翻折,点B落在点B′处,∴∠B′ED=∠BED=45°,∠B′DE=∠BDE=45°,B′E=BE=1,B′D=BD=1,∴∠BEB′=∠BDB′=90°,∵点B的坐标为(3,2),∴点B′的坐标为(2,1).故答案为:(2,1).此题考查翻折变换(折叠问题),坐标与图形性质,解题关键在于得到△BED是等腰直角三角形22、1【解析】试题分析:要求PM+PN的最小值,PM,PN不能直接求,可考虑通过作辅助线转化PN,PM的值,从而找出其最小值求解.如图:作ME⊥AC交AD于E,连接EN,则EN就是PM+PN的最小值,∵M、N分别是AB、BC的中点,∴BN=BM=AM,∵ME⊥AC交AD于E,∴AE=AM,∴AE=BN,AE∥BN,∴四边形ABNE是平行四边形,而由已知可得AB=1∴AE=BN,∵四边形ABCD是菱形,∴AE∥BN,∴四边形AENB为平行四边形,∴EN=AB=1,∴PM+PN的最小值为1.考点:轴对称—最短路径问题点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.综合运用这些知识是解决本题的关键23、乙【解析】
根据在平均成绩相同的情况下,方差越小,成绩越稳定即可得出结论.【详解】解:∵0.5>0.4∴S甲2>S乙2,则成绩较稳定的同学是乙
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 腹部损伤护理课件
- 开业庆典合同协议书范本
- 股权转让协议模板工商办理变更登记用
- 2024年度工程公司安全生产责任保险合同3篇
- 乙公司租赁2024年度甲方办公楼合同协议书
- 2024年度服装设计委托加工合同
- 2024版特许经营合同经营范围与管理规定3篇
- 2024年度店铺专利权买卖合同2篇
- 石膏脱水系统课件
- 2024年度饭店及店内设施租赁与购买合同
- 沉浸式展览-技术催生的新体验
- 琵琶演出策划方案
- 车辆动态监控员培训课件
- 毛概讨论全面建设小康社会
- 煤矿职工安全生产的权利和义务
- 2024年基金应知应会考试试题及答案
- 银行客户经理竞聘演讲课件
- EMS中国邮政速递物流
- 初中九年级音乐课件外婆的澎湖湾
- 医疗器械经营客户投诉处理培训
- 法律逻辑案例分析
评论
0/150
提交评论