版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届湖北省随州市名校九上数学开学教学质量检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定2、(4分)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A.53,53 B.53,56 C.56,53 D.56,563、(4分)下列式子从左边到右边的变形是因式分解的是()A. B.C. D.4、(4分)下列交通标志既是中心对称图形又是轴对称图形的是()A. B. C. D.5、(4分)已知点A(x1,y1),B(x2,y2)是一次函数y=(m﹣1)x+2﹣m上任意两点,且当x1<x2时,y1>y2,则这个函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限6、(4分)函数y=中自变量x的取值范围是()A.x≠2 B.x≠0 C.x≠0且x≠2 D.x>27、(4分)若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A. B. C. D.8、(4分)四边形的对角线相交于点,且,那么下列条件不能判断四边形为平行四边形的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)元旦期间,张老师开车从汕头到相距150千米的老家探亲,如果油箱里剩余油量(升)与行驶里程(千米)之间是一次函数关系,其图象如图所示,那么张老师到达老家时,油箱里剩余油量是_______升.10、(4分)如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且AP=2,∠BAC=60°,有一点F在边AB上运动,当运动到某一位置时△FAP面积恰好是△EAP面积的2倍,则此时AF的长是______.11、(4分)已知、为有理数,、分别表示的整数部分和小数部分,且,则.12、(4分)如图,在平面直角坐标系中,ΔABC绕点D旋转得到ΔA’B’C’,则点D的坐标为____.13、(4分)如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于_____.三、解答题(本大题共5个小题,共48分)14、(12分)某商厦进货员预测一种应季衬衫能畅销市场,就用万元购进这种衬衫,面市后果然供不应求.商厦又用万元购进第二批这种衬衫,所购数量是第一批进量的倍,但单价贵了元.商厦销售这种衬衫时每件定价元,最后剩下件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?15、(8分)如图,在平面直角坐标系中,点的坐标为,点在轴的正半轴上.若点,在线段上,且为某个一边与轴平行的矩形的对角线,则称这个矩形为点、的“涵矩形”.下图为点,的“涵矩形”的示意图.(1)点的坐标为.①若点的横坐标为,点与点重合,则点、的“涵矩形”的周长为__________.②若点,的“涵矩形”的周长为,点的坐标为,则点,,中,能够成为点、的“涵矩形”的顶点的是_________.(2)四边形是点、的“涵矩形”,点在的内部,且它是正方形.①当正方形的周长为,点的横坐标为时,求点的坐标.②当正方形的对角线长度为时,连结.直接写出线段的取值范围.16、(8分)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式,即,是否可以因式分解呢?当然可以,而且也很简单。如;.请你仿照上述方法分解因式:(1)(2)17、(10分)化简:(1)(2)(x﹣)÷18、(10分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知则第个等式为____________.20、(4分)如图,矩形ABCD的对角线AC与BD交于点0,过点O作BD的垂线分别交AD、BC于E.F两点,若AC=23,∠DAO=300,则FB的长度为________.21、(4分)甲、乙两个班级各20名男生测试“引体向上”,成绩如下图所示:设甲、乙两个班级男生“引体向上”个数的方差分别为S2甲和S2乙,则S2甲____S2乙.(填“>”,“<”或“=”)22、(4分)若点在轴上,则点的坐标为__________.23、(4分)如图,点P为函数y=(x>0)图象上一点过点P作x轴、y轴的平行线,分别与函数y(x>0)的图象交于点A,B,则△AOB的面积为_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是,将沿直线BD折叠,使得点C落在对角线OB上的点E处,折痕与OC交于点D.(1)求直线OB的解析式及线段OE的长.(2)求直线BD的解析式及点E的坐标.25、(10分)某蛋糕店为了吸引顾客,在A、B两种蛋糕中,轮流降低其中一种蛋糕价格,这样形成两种盈利模式,模式一:A种蛋糕利润每盒8元,B种蛋糕利润每盒15元;模式二:A种蛋糕利润每盒14元,B种蛋糕利润每盒11元每天限定销售A、B两种蛋糕共40盒,且都能售完,设每天销售A种蛋糕x盒(1)设按模式一销售A、B两种蛋糕所获利润为y1元,按模式二销售A、B两种蛋糕所获利润为y2元,分别求出y1、y2关于x的函数解析式;(2)在同一个坐标系内分别画出(1)题中的两个函数的图象;(3)若y始终表示y1、y2中较大的值,请问y是否为x的函数,并说说你的理由,并直接写出y的最小值.26、(12分)在△ABC中,∠ABC=90°(1)作线段AC的垂直平分线1,交AC于点O:(保留作图痕迹,请标明字母)(2)连接BO并延长至D,使得OD=OB,连接DA、DC,证明四边形ABCD是矩形.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】试题分析:先根据一次函数的解析式判断出函数的增减性,再比较出3与﹣1的大小,根据函数的增减性进行解答即可.解:∵直线y=﹣1x+3中,k=﹣1<0,∴此函数中y随x的增大而减小,∵3>﹣1,∴y1<y1.故选B.考点:一次函数图象上点的坐标特征.2、D【解析】
根据众数和中位数的定义求解可得.【详解】解:将数据重新排列为51,53,53,56,56,56,58,所以这组数据的中位数为56,众数为56,故选:D.本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、B【解析】
根据将多项式化为几个整式的乘积形式即为因式分解进行判断即可.【详解】解:A.左边是单项式,不是因式分解,B.左边是多项式,右边是最简的整式的积的形式,是因式分解;C.右边不是积的形式,不是因式分解,故错误;
D、右边不是积的形式,不是因式分解,故错误;;
故选:B.本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义,本题属于基础题型.4、C【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误;故选C.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、C【解析】
先根据时,,得到随的增大而减小,所以的比例系数小于,那么,解不等式即可求解.【详解】时,,随的增大而减小,函数图象从左往右下降,,,,即函数图象与轴交于正半轴,这个函数的图象不经过第三象限.故选:.本题考查一次函数的图象性质:当,随的增大而增大;当时,随的增大而减小.6、A【解析】
根据分母不为0列式求值即可.【详解】由题意得x﹣1≠0,解得:x≠1.故选:A.此题主要考查函数的自变量取值,解题的关键是熟知分母不为零.7、B【解析】试题分析:∵一次函数y=kx+b的图象经过一、二、四象限∴k<0,b>0∴直线y=bx-k经过一、二、三象限考点:一次函数的性质8、C【解析】
根据题目条件结合平行四边形的判定方法:对角线互相平分的四边形是平行四边形分别进行分析即可.【详解】解:A、加上BO=DO可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;B、加上条件AB∥CD可证明△AOB≌△COD可得BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;C、加上条件AB=CD不能证明四边形是平行四边形,故此选项符合题意;D、加上条件∠ADB=∠DBC可利用ASA证明△AOD≌△COB,可证明BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;故选:C.此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.二、填空题(本大题共5个小题,每小题4分,共20分)9、20【解析】
先运用待定系数法求出y与x之间的函数关系式,然后把x=150代入解析式就可以求出y的值,从而得出剩余的油量.【详解】解:设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,则y=﹣0.1x+1.当x=150时,y=﹣0.1×150+1=20(升).故答案为20本题考查了一次函数的应用,正确读懂函数图像,利用待定系数法求函数解析式并代入求值是解题的关键.10、1.【解析】
作PH⊥AB于H,根据角平分线的性质得到PH=PE,根据余弦的定义求出AE,根据三角形的面积公式计算即可.【详解】作PH⊥AB于H,∵AD是∠BAC的平分线,PE⊥AC,PH⊥AB,∴PH=PE,∵P是∠BAC的平分线AD上一点,∴∠EAP=30°,∵PE⊥AC,∴∠AEP=90°,∴AE=AP×cos∠EAP=3,∵△FAP面积恰好是△EAP面积的2倍,PH=PE,∴AF=2AE=1,故答案为1.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.11、1.【解析】试题分析:∵2<<3,∴5>>1,∴m=1,n=,∵,∴,化简得:,等式两边相对照,因为结果不含,∴且,解得a=3,b=﹣2,∴2a+b=2×3﹣2=6﹣2=1.故答案为1.考点:估算无理数的大小.12、(3,0)【解析】
连接AA′,BB′,分别作AA′,BB′的垂直平分线,两垂直平分线的交点即是旋转中心,然后写出坐标即可.【详解】连接旋转前后的对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线相交的地方就是旋转中心.所以,旋转中心D的坐标为(3,0).故答案为:(3,0).本题考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.13、96【解析】试题解析:如图所示,连接AC,在Rt△ADC中,CD=6,AD=8,则.在△ABC中,AB=26,BC=24,AC=10,则,故△ABC为直角三角形..故本题的正确答案应为96.三、解答题(本大题共5个小题,共48分)14、商厦共盈利元.【解析】
根据题意找出等量关系即第二批衬衫的单价-第一批衬衫的单价=4元,列出方程,可求得两批购进衬衫的数量;再设这笔生意盈利y元,可列方程为y+80000+176000=58(1+4000-150)+80%×58×150,可求出商厦的总盈利.【详解】设第一批购进x件衬衫,则第二批购进了2x件,依题意可得:,解得x=1.经检验x=1是方程的解,故第一批购进衬衫1件,第二批购进了4000件.设这笔生意盈利y元,可列方程为:y+80000+176000=58(1+4000-150)+80%×58×150,解得y=2.答:在这两笔生意中,商厦共盈利2元.本题主要考查分式方程的应用,解题的关键是找出题中的等量关系.注意:求出的结果必须检验且还要看是否符合题意15、(1)①.②;(2)①点的坐标为或.②.【解析】
(1)①利用A、B的坐标求出直线AB的解析式,再将P点横坐标代入,计算即可得点、的“新矩形”的周长;②由直线AB的解析式判定是否经过E、F、G三点,发现只经过了F(1,2),能够成为点、的“涵矩形”的顶点的是F(1,2)(2)①①根据正方形的性质可得出∠ABO=45°,结合点A的坐标可得出点B的坐标及直线AB的函数表达式,由的横坐标为,可得出点P的坐标,再由正方形的周长可得出点Q的坐标,进而可得出点Q的坐标;②由正方形的对角线长度为,可得正方形的边长为1,由直线AB的解析式y=-x+6可知M点的运动轨迹是直线y=-x+5,由点在的内部,x的取值范围是0<x<5,OM<5,OM最小值是由O向直线y=-x+5作垂线段,此时OM=,可得OM的取值范围.【详解】(1)①解:由A(0,6),B(3,0)可得直线AB的解析式为:y=-2x+6,∵P点横坐标是∴当x=时,y=3∴P(,3).∵点与点重合,∴Q(3,0)∴点、的“涵矩形”的宽为:3-=,长为3-0=3∴点、的“涵矩形”的周长为:故答案为9②.由①可得直线AB的解析式为:y=-2x+6可设Q(a,-2a+6),则成为点、的“涵矩形”的顶点且在AOB内部的一点坐标为M(1,-2a+6)∴PM=4-(-2a+6)=2a-2,MQ=a-1∵点,的“涵矩形”的周长为∴PM+MQ=3∴2a-2+a-1=3解得:a=2∴M(1,2)故答案为F(1,2),只写或也可以.(2)①点、的“涵矩形”是正方形,,点的坐标为,点的坐标为,直线的函数表达式为.点的横坐标为,点的坐标为.正方形的周长为,点的横坐标为或,点的坐标为或.②∵正方形的对角线长度为,∴可得正方形的边长为1,因为直线AB的解析式y=-x+6可设M点的运动轨迹是直线y=-x+b,且过(0,5)故M点的运动轨迹是直线y=-x+5∵点在的内部,x的取值范围是0<x<5,∴当M落在OB或者OA边上时,OM取得最大值,此时OM=5,由于点在的内部,∴OM<5,当OM⊥直线y=-x+5时,OM取得最小值,此时OM=,∴OM的取值范围..故答案为本题考查了新型定义题型,矩形、正方形、一次函数、线段最值等问题,难度较高,审清题意,会综合运用矩形、正方形、一次函数以及最值的求法,是解题的关键.16、①;②【解析】
(1)逆用乘法公式(x+a)
(x+b)=x2+(a+b)x+ab即可.(2)逆用乘法公式(x+a)
(x+b)=x2+(a+b)x+ab即可.【详解】(1)x2-7x-18=(x+2)(x-9);(2)x2+12xy-13y2=(x+13y)(x-y).本题考查因式分解的应用,解题的关键是学会逆用乘法公式(x+a)
(x+b)=x2+(a+b)x+ab,进行因式分解,属于中考常考题型.17、(1);(2)x2+x.【解析】
(1)根据分式的性质,结合完全平方公式和平方差公式化简即可;(2)根据分式的性质,结合完全平方公式和平方差公式化简即可.【详解】解:(1)===;(2)==x(x+1)=x2+x.本题主要考查分式的化简,结合考查完全平方公式和平方差公式,应当熟练掌握.18、(1)111,51;(2)11.【解析】
(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【详解】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:解得:x=51,经检验x=51是原方程的解,则甲工程队每天能完成绿化的面积是51×2=111(m2),答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;(2)设应安排甲队工作y天,根据题意得:1.4y+×1.25≤8,解得:y≥11,答:至少应安排甲队工作11天.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】根据21-20=20,22-21=21,23-22=22,可得被减数、减数、差都是以2为底数的幂的形式,减数和差的指数相同,被减数的指数比减数和差的指数都多1,第n个等式是:2n−2n−1=2n−1。20、2【解析】
先根据矩形的性质,推理得到∠OBF=30°,BO=12BD=12AC=3,再根据含30【详解】解:∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=30°,∵EF⊥BD,∴∠BOF=90°,∵四边形ABCD是矩形,∴AD∥BC,BO=1∴∠OBF=∠ODA=30°,∴OF=12又∵Rt△BOF中,BF2-OF2=OB2,∴BF2-14BF2=32∴BF=2.本题主要考查了矩形的性质以及勾股定理的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.21、<【解析】
分别求出甲、乙两个班级的成绩平均数,然后根据方差公式求方差作比较即可.【详解】解:甲班20名男生引体向上个数为5,6,7,8的人数都是5,乙班20名男生引体向上个数为5和8的人数都是6个,个数为6和7的人数都是4个,∴甲班20名男生引体向上的平均数=,乙班20名男生引体向上的平均数=,∴,,∴,故答案为:<.本题考查了方差的计算,熟练掌握方差公式是解题关键.22、【解析】
根据x轴上点的纵坐标等于1,可得m值,根据有理数的加法,可得点P的坐标.【详解】解:因为点P(m+1,m-2)在x轴上,
所以m-2=1,解得m=2,
当m=2时,点P的坐标为(3,1),
故答案为(3,1).本题主要考查了点的坐标.坐标轴上点的坐标的特点:x轴上点的纵坐标为1,y轴上的横坐标为1.23、1【解析】
根据题意作AD⊥x轴于D,设PB⊥x轴于E,,设出P点的坐标,再结合S△AOB=S四边形ABOD﹣S△OAD=S四边形ABOD﹣S△OBE=S梯形ABED,代入计算即可.【详解】解:作AD⊥x轴于D,设PB⊥x轴于E,∵点P为函数y=(x>0)图象上一点,过点P作x轴、y轴的平行线,∴设P(m,),则A(2m,),B(m,),∵点A、B在函数y=(x>0)的图象上,∴S△OBE=S△OAD,∵S△AOB=S四边形ABOD﹣S△OAD=S四边形ABOD﹣S△OBE=S梯形ABED,∴S△AOB=(+)(2m﹣m)=1,故答案为1.本题主要考查反比例函数的面积问题,这是考试的重点知识,往往结合几何问题求解.二、解答题(本大题共3个小题,共30分)24、(1)直线OB的解析式为,;(2)直线BD的解析式为,.【解析】
(1)先利用待定系数法求直线OB的解析式,再利用两点间的距离公式计算出OB,然后根据折叠的性质得到BE=BC=6,从而可计算出OE=OB-BE=4;
(2)设D(0,t),则OD=t,CD=8-t,根据折叠的性质得到DE=DC=8-t,∠DEB=∠DCB=90°,根据勾股定理得(8-t)2+42=t2,求出t得到D(0,5),于是可利用待定系数法求出直线BD的解析式;设E(x,),利用OE=4得到x2+()2=42,然后解方程求出x即可得到E点坐标.【详解】解:(1)设直线OB的解析式为,将点代入中,得,∴,∴直线OB的解析式为.∵四边形OABC是矩形.且,∴,,∴,.根据勾股定理得,由折叠知,.∴(2)设D(0,t),∴,由折叠知,,,在中,,根据勾股定理得,∴,∴,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 政府项目策划包装合同范例
- 2025公司人事聘用合同范本
- 2024-2025学年新教材高中生物第4章生物技术的安全性与伦理问题第1节转基因产品的安全性课时分层作业含解析新人教版选择性必修3
- 2025年南平道路货运驾驶员从业资格考试题库
- 2025年深圳货运从业资格证
- 2025解除劳动合同的手续
- 2025合同管理制度2
- 2025年广西货运从业资格证考试题及答案
- 2025年丽水货运从业资格模拟考试题
- 蟹肉卷行业深度研究报告
- 肱骨近端骨折护理查房课件整理-002
- 进入答辩环节的高职应用技术推广中心申报书(最终版)
- 高等数学(理工)Ι知到章节答案智慧树2023年重庆科技学院
- 2023学年完整公开课版瑶族
- 高考模拟作文“同舟共济渡难关团结合作创未来”导写及范文
- 翻译技术实践知到章节答案智慧树2023年山东师范大学
- 尾矿库基本知识
- 三年级体质健康数据
- 矿山企业新员工入职公司三级安全教育培训必备教材(全套)
- 感染性休克指南
- GB/T 32891.2-2019旋转电机效率分级(IE代码)第2部分:变速交流电动机
评论
0/150
提交评论