![2025届黑龙江省大庆市龙凤区九上数学开学学业水平测试模拟试题【含答案】_第1页](http://file4.renrendoc.com/view12/M06/07/39/wKhkGWcVA1OAbWYsAAHmugnHvyY939.jpg)
![2025届黑龙江省大庆市龙凤区九上数学开学学业水平测试模拟试题【含答案】_第2页](http://file4.renrendoc.com/view12/M06/07/39/wKhkGWcVA1OAbWYsAAHmugnHvyY9392.jpg)
![2025届黑龙江省大庆市龙凤区九上数学开学学业水平测试模拟试题【含答案】_第3页](http://file4.renrendoc.com/view12/M06/07/39/wKhkGWcVA1OAbWYsAAHmugnHvyY9393.jpg)
![2025届黑龙江省大庆市龙凤区九上数学开学学业水平测试模拟试题【含答案】_第4页](http://file4.renrendoc.com/view12/M06/07/39/wKhkGWcVA1OAbWYsAAHmugnHvyY9394.jpg)
![2025届黑龙江省大庆市龙凤区九上数学开学学业水平测试模拟试题【含答案】_第5页](http://file4.renrendoc.com/view12/M06/07/39/wKhkGWcVA1OAbWYsAAHmugnHvyY9395.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2025届黑龙江省大庆市龙凤区九上数学开学学业水平测试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)不能使四边形ABCD是平行四边形是条件是()A.AB=CD,BC=AD B.AB=CD,C. D.AB=CD,2、(4分)四边形是平行四边形,下列结论中正确的是()A.当时,它是菱形 B.当时,它是矩形C.当时,它是正方形 D.当时,它是正方形3、(4分)于反比例函数y=2x的图象,下列说法中,正确的是(A.图象的两个分支分别位于第二、第四象限B.图象的两个分支关于y轴对称C.图象经过点(1,1)D.当x>0时,y随x增大而减小4、(4分)如图所示的四个图案是我国几家国有银行的图标,其中图标属于中心对称的有()A.1个 B.2个 C.3个 D.4个5、(4分)在菱形中,,点为边的中点,点与点关于对称,连接、、,下列结论:①;②;③;④,其中正确的是()A.①② B.①②③ C.①②④ D.①②③④6、(4分)函数y=3x﹣1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7、(4分)若是关于,的二元一次方程,则()A., B., C., D.,8、(4分)把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A.y=2x﹣2 B.y=2x+1 C.y=2x D.y=2x+2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)计算:=_____.10、(4分)|1﹣|=_____.11、(4分)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.12、(4分)若关于的方程有增根,则的值是________.13、(4分)如图,在矩形ABCD中,∠ACB=30°,BC=2,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE.设AG=a,则点G到BC边的距离为_____(用含a的代数式表示),ADG的面积的最小值为_____.三、解答题(本大题共5个小题,共48分)14、(12分)有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)填表…0123456...…32...(2)根据(1)中的结果,请在所给坐标系中画出函数的图象;(3)结合函数图象,请写出该函数的一条性质.15、(8分)如图,点A的坐标为(﹣32(1)求过A,B两点直线的函数表达式;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.16、(8分)以△ABC的三边在BC同侧分别作三个等边三角形△ABD,△BCE,△ACF,试回答下列问题:(1)四边形ADEF是什么四边形?请证明:(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,四边形ADEF是菱形?(4)当△ABC满足什么条件时,能否构成正方形?(5)当△ABC满足什么条件时,无法构成四边形?17、(10分)如图,一个可以自由转动的转盘,分成了四个扇形区域,共有三种不同的颜色,其中红色区域扇形的圆心角为.小华对小明说:“我们用这个转盘来做一个游戏,指针指向蓝色区域你赢,指针指向红色区域我赢”.你认为这个游戏规则公平吗?请说明理由.18、(10分)珠海市某中学在创建“书香校园”活动中,为了解学生的读书情况,某校抽样调查了部分同学在一周内的阅读时间,绘制如下统计图.根据图中信息,解答下列问题:(1)被抽查学生阅读时间的中位数为h,平均数为h;(2)若该校共有1500名学生,请你估算该校一周内阅读时间不少于3h的学生人数.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在正方形ABCD中,H为AD上一点,∠ABH=∠DBH,BH交AC于点G.若HD=2,则线段AD的长为_____.20、(4分)如图在△ABC中,AH⊥BC于点H,在AH上取一点D,连接DC,使DA=DC,且∠ADC=2∠DBC,若DH=2,BC=6,则AB=_________________。21、(4分)反比例函数与一次函数的图像的一个交点坐标是,则=________.22、(4分)若,则_____.23、(4分)如图,菱形ABCD的边长为4,∠ABC=60°,且M为BC的中点,P是对角线BD上的一动点,则PM+PC的最小值为_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,等腰直角中,,点在上,将绕顶点沿顺时针方向旋转90°后得到.(1)求的度数;(2)当,时,求的大小;(3)当点在线段上运动时(不与,重合),求证:.25、(10分)在平面直角坐标系中,点.(1)直接写出直线的解析式;(2)如图1,过点的直线交轴于点,若,求的值;(3)如图2,点从出发以每秒1个单位的速度沿方向运动,同时点从出发以每秒0.6个单位的速度沿方向运动,运动时间为秒(),过点作交轴于点,连接,是否存在满足条件的,使四边形为菱形,判断并说明理由.26、(12分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:△ABF是等腰三角形.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
根据平行四边形的判定即可得.【详解】A、,即两组对边分别相等,能使四边形ABCD是平行四边形,此项不符题意B、,即一组对边平行且相等,能使四边形ABCD是平行四边形,此项不符题意C、,即两组对边分别平行,能使四边形ABCD是平行四边形,此项不符题意D、,即一组对边相等,另一组对边平行,这个四边形有可能是等腰梯形,则不能使四边形ABCD是平行四边形,此项符合题意故选:D.本题考查了平行四边形的判定,熟记平行四边形的判定方法是解题关键.2、B【解析】
根据正方形、菱形、矩形的概念逐个判断即可.【详解】解:当四边形ABCD为平行四边形时:当AC=BD时,它应该是矩形,所以A、C错误,B正确.当时,它是菱形,所以D错误.故选B.本题主要考查正方形、菱形、矩形的概念,这是必考点,必须熟练掌握,这也是同学们最容易忘掉的一个判定定理.3、D【解析】
根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.【详解】:A.∵k=2>0,∴它的图象在第一、三象限,故A选项错误;B.图象的两个分支关于y=-x对称,故B选项错误;C.把点(1,1)代入反比例函数y=2x得2≠1,故D.当x>0时,y随x的增大而减小,故D选项正确.故选D.本题考查了反比例函数y=kx(k≠0)的图象及性质,①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随4、B【解析】
根据中心对称图形的概念求解.【详解】第一个是是中心对称图形,故符合题意;
第二个是中心对称图形,故符合题意;
第三个不是中心对称图形,故不符合题意;
第四个不是中心对称图形,故不符合题意.所以共计2个中心对称图形.故选:B.考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、C【解析】
如图,设DE交AP于0,根据菱形的性质、翻折不变性-判断即可解决问题;【详解】解:如图,设DE交AP于O.∵四边形ABCD是菱形∴DA=DC=AB∵A.P关于DE对称,∴DE⊥AP,OA=OP∴DA=DP∴DP=CD,故①正确∵AE=EB,AO=OP∴OE//PB,∴PB⊥PA∴∠APB=90°∴,故②正确若∠DCP=75°,则∠CDP=30°∵LADC=60°∴DP平分∠ADC,显然不符合题意,故③错误;∵∠ADC=60°,DA=DP=DC∴∠DAP=∠DPA,∠DCP=∠DPC,∠CPA=(360°-60°)=150°,故④正确.故选:C本题考查菱形的性质、轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6、B【解析】试题分析:根据一次函数的性质即可得到结果。,图象经过一、二、四象限,不经过第二象限,故选B.考点:本题考查的是一次函数的性质点评:解答本题的关键是熟练掌握一次函数的性质:当时,图象经过一、二、三象限;当时,图象经过一、三、四象限;当时,图象经过一、二、四象限;当时,图象经过二、三、四象限.7、D【解析】
根据二元一次方程的定义可知,m、n应满足以下4个关系式:,解之即得.【详解】解:由题意是关于,的二元一次方程,于是m、n应满足,解得,,故选D.本题考查了二元一次方程的定义,认真审题并列出m、n应满足的4个关系式是解决此题的关键.8、B【解析】试题分析:根据题意,将直线y=2x﹣1向左平移1个单位后得到的直线解析式为:y=2(x+1)﹣1,即y=2x+1,故选B.考点:一次函数图象与几何变换二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
先通分,再把分子相加减即可.【详解】解:原式=故答案为:本题考查的是分式的加减,熟知异分母的分式相加减的法则是解答此题的关键.10、﹣1.【解析】
根据差的绝对值是大数减小数,可得答案.【详解】|1﹣|=﹣1,故答案为﹣1.本题考查了实数的性质,差的绝对值是大数减小数.11、【解析】
如图,在Rt△ADF和Rt△AEF中,AD=AE,AF=AF,∴≌(),故,因为是正方形的对角线,故,故∠FAD=22.5°,故答案为22.5.12、.【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】解:方程两边都乘x-2,得
∵方程有增根,
∴最简公分母x-2=0,即增根是x=2,
把x=2代入整式方程,得.
故答案为:.考查了分式方程的增根,增根问题可按如下步骤进行:
①根据最简公分母确定增根的值;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.13、【解析】
先根据直角三角形含30度角的性质和勾股定理得AB=2,AC=4,从而得CG的长,作辅助线,构建矩形ABHM和高线GM,如图2,通过画图发现:当GE⊥BC时,AG最小,即最小,可计算的值,从而得结论.【详解】∵四边形ABCD是矩形,∴∠B=90°,∵∠ACB=30°,BC=2,∴AB=2,AC=4,∵AG=,∴CG=,如图1,过G作MH⊥BC于H,交AD于M,Rt△CGH中,∠ACB=30°,∴GH=CG=,则点G到BC边的距离为,∵HM⊥BC,AD∥BC,∴HM⊥AD,∴∠AMG=90°,∵∠B=∠BHM=90°,∴四边形ABHM是矩形,∴HM=AB=2,∴GM=2﹣GH==,∴S△ADG,当最小时,△ADG的面积最小,如图2,当GE⊥BC时,AG最小,即a最小,∵FG是AE的垂直平分线,∴AG=EG,∴,∴,∴△ADG的面积的最小值为,故答案为:,.本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG的面积最小时点G的位置是解答此题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)见解析;(3)见解析【解析】
(1)将x的值代入函数中,再求得y的值即可;(2)根据(1)中x、y的值描点,连线即可;(3)根据(2)中函数的图象写出一条性质即可,如:不等式成立的的取值范围是.【详解】(1)填表如下:...0123456......3210...(2)根据(1)中的结果作图如下:(3)根据(2)中的图象,不等式成立的的取值范围是.考查了画函数的图象、性质,解题关键是由列表得到图象,由图象得到性质.15、(1)过A,B两点的直线解析式为y=2x+3;(2)△ABP的面积为274或9【解析】
(1)设直线l的解析式为y=ax+b,把A、B的坐标代入求出即可;(2)分为两种情况:①当P在x轴的负半轴上时,②当P在x轴的正半轴上时,求出AP,再根据三角形面积公式求出即可.【详解】解:(1)设过A,B两点的直线解析式为y=ax+b(a≠0),则根据题意,得﹣3解得:a=2b=3则过A,B两点的直线解析式为y=2x+3;(2)设P点坐标为(x,0),依题意得x=±3,∴P点坐标分别为P1(3,0),P2(﹣3,0),S∆ABP1S∆ABP2故△ABP的面积为274或9本题考查了用待定系数法求一次函数的解析式,三角形的面积,解二元一次方程组等知识点的应用,关键是能求出符合条件的两种情况.16、(1)见解析;(2)当△ABC中的∠BAC=150°时,四边形ADEF是矩形;(3)当△ABC中的AB=AC时,四边形ADEF是菱形;(4)当∠BAC=150°且AB=AC时,四边形ADEF是正方形;(5)当∠BAC=60°时,D、A、F为同一直线,与E点构不成四边形,即以A、D、E、F为顶点的四边形不存在.【解析】
(1)通过证明△DBE≌△ABC,得到DE=AC,利用等边三角形ACF,可得DE=AF,同理证明与全等,利用等边三角形,得AD=EF,可得答案.(2)利用平行四边形ADEF是矩形,结合已知条件等边三角形得到即可.(3)利用平行四边形ADEF是菱形形,结合已知条件等边三角形得到即可.(4)结合(2)(3)问可得答案.(5)当四边形ADEF不存在时,即出现三个顶点在一条直线上,因此可得答案。【详解】解:(1)∵△BCE、△ABD是等边三角形,∴∠DBA=∠EBC=60°,AB=BD,BE=BC,∴∠DBE=∠ABC,∴△DBE≌△ABC,∴DE=AC,又△ACF是等边三角形,∴AC=AF,∴DE=AF,同理可证:AD=EF,∴四边形ADEF是平行四边形.(2)假设四边形ADEF是矩形,则∠DAF=90°,又∠DAB=∠FAC=60°,∠DAB+∠FAC+∠DAF+∠BAC=360°∴∠BAC=150°.因此当△ABC中的∠BAC=150°时,四边形ADEF是矩形.(3)假设四边形ADEF是菱形,则AD=DE=EF=AF∵AB=AD,AC=AF,∴AB=AC因此当△ABC中的AB=AC时,四边形ADEF是菱形.(4)结合(2)(3)问可知当∠BAC=150°且AB=AC时,四边形ADEF是正方形.(5)由图知道:∠DAB+∠FAC+∠DAF+∠BAC=360°∴当∠BAC=60°时,D、A、F为同一直线,与E点构不成四边形,即以A、D、E、F为顶点的四边形不存在.本题考查了平行四边形的判定,菱形,矩形,正方形的性质与判定,全等三角形的判定,等边三角形的性质等知识点的应用,是一道综合性比较强的题目,掌握相关的知识点是解题的关键.17、游戏公平【解析】
直接利用概率公式求得指针指向蓝色区域和红色区域的概率,进而比较得出答案.【详解】解:∵红色区域扇形的圆心角为,∴蓝色区域扇形的圆心角为60°+60°,,,∴,所以游戏公平.故答案为:游戏公平.本题考查游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18、(1)2h,2.34h;(2)540.【解析】
(1)根据统计图中的数据确定出学生劳动时间的众数、中位数和平均数即可;
(2)根据总人数×阅读时间不少于三小时的百分比可得结果.【详解】(1)2h,2.34h(2)被抽查一周内阅读时间不少于3h的学生人数占比为:=36%1500×36%=540(人)答:被抽查一周内阅读时间不少于3h的学生人数为540此题考查了众数,条形统计图,平均数、中位数及用样本估计总体,弄清题中的数据是解本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
作HE⊥BD交BD于点E,在等腰直角三角形DEH中求出HE的长,由角平分线的性质可得HE=AH,即可求出AD的长.【详解】作HE⊥BD交BD于点E,∵四边形ABCD是正方形,∴∠BAD=90°,∠ADB=45°,∴△DEH是等腰直角三角形,∴HE=DE,∵HE2+DE2=DH2,∴HE=,∵∠ABH=∠DBH,∠BAD=90°,∠BEH=90°,∴HE=AH=,∴.AD=.故答案为.本题考查了正方形的性质,角平分线的性质,勾股定理,等腰直角三角形的判定与性质,熟练掌握正方形的性质是解答本题的关键.20、【解析】
如图,过点B作BE∥DH,并在BE上取BE=2DH,连接ED,EC.并取BE的中点K,连接DK,根据垂直的定义得到∠DHC=90°,由平行线的性质得到∠EBC=90°.由线段垂直平分线的性质得到BK=DH.推出四边形DKBH为矩形,得到DK⊥BE,根据等腰三角形的性质得到DE=DB,∠EDB=2∠KDB,通过△EDC≌△BDA,得到AB=CE,根据勾股定理得到,于是得到结论.【详解】解:如图,过点B作BE∥DH,并在BE上取BE=2DH,连接ED,EC.并取BE的中点K,连接DK,∵DH⊥BC于H,∴∠DHC=90°,∵BE∥DH,∴∠EBC=90°,∵∠EBC=90°,∵K为BE的中点,BE=2DH,∴BK=DH.∵BK∥DH,∴四边形DKBH为矩形,DK∥BH,∴DK⊥BE,∠KDB=∠DBC,∴DE=DB,∠EDB=2∠KDB,∵∠ADC=2∠DBC,∴∠EDB=∠ADC,∴∠EDB+∠EDA=∠ADC+∠EDA,即∠EDC=∠BDA,在△EDC、△BDA中,,∴△EDC≌△BDA,∴AB=CE,∴,∴AB=.本题考查了全等三角形的判定与性质,线段垂直平分线的性质,等腰三角形的判定与性质,矩形的判定与性质,勾股定理的运用.关键是根据已知条件构造全等三角形.21、-6【解析】
根据题意得到ab=2,b-a=3,代入原式计算即可.【详解】∵反比例函数与一次函数y=x+3的图象的一个交点坐标为(m,n),∴b=,b=a+3,∴ab=2,b-a=3,∴==2×(-3)=-6,故答案为:-6此题考查反比例函数与一次函数的交点问题,解题关键在于得到ab=2,b-a=322、【解析】分析:由题干可得b=,然后将其代入所求的分式解答即可.详解:∵的两内项是b、1,两外项是a、2,∴b=,∴=.故本题的答案:.点睛:比例的性质.23、2【解析】
连接AC,∵四边形ABCD为菱形,∴AB=BC=4,A、C关于BD对称,∴连AM交BD于P,则PM+PC=PM+AP=AM,根据两点之间线段最短,AM的长即为PM+PC的最小值.∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,又∵BM=CM,∴AM⊥BC,∴AM=,故答案为:2.本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,轴对称中的最短路径问题,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1);(1);(3)见解析.【解析】
(1)由于∠PCB=∠BCQ=45°,故有∠PCQ=90°;(1)利用勾股定理得出AC的长,再利用旋转的性质得出AP=CQ,求得PC的长度,进而利用勾股定理得出PQ的长;(3)先证明△PBQ也是等腰直角三角形,从而得到PQ1=1PB1=PA1+PC1.【详解】(1)∵△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ,∴,∴,∴.(1)当时,有,,,∴.(3)由(1)可得,,,,∴是等腰直角三角形,是直角三角形.∴,∵,∴,故有.考查了旋转的性质以及勾股定理和等腰直角三角形的性质等知识,得出旋转前后对应线段
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年可变形消毒工具形状行业跨境出海战略研究报告
- 2025-2030年可收纳营地灯行业跨境出海战略研究报告
- 星海音乐学院《项目施工组织与管理实训》2023-2024学年第二学期期末试卷
- 26《好的故事》第二课时 教学设计 -2024-2025学年统编版语文六年级上册
- 分数除法-分数除法教学设计-2024-2025学年六年级上册数学人教版
- 白皮书:职业技能教育培训
- 员工安全评述
- 2025至2031年中国段染纱行业投资前景及策略咨询研究报告
- 2025年力克舒胶囊项目可行性研究报告
- 碧桂园营销培训课件
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传画册
- 小学生急救常识(课件)主题教育班会
- Part 7 Formal and Informal Styles课件
- 信息光学试卷试题及答案
- 文化差异及跨文化交际试题集
- 油画人体张东方姑娘的极致美
- PC-Ф800×800锤式破碎机结构设计
- 慢病患者随访服务记录表
- 双溪课程评量表完整优秀版
- 企业名字的81种数理含义
- 最新社工服务部组织架构
评论
0/150
提交评论