专题07 相似三角形中的重要模型-手拉手模型(解析版)_第1页
专题07 相似三角形中的重要模型-手拉手模型(解析版)_第2页
专题07 相似三角形中的重要模型-手拉手模型(解析版)_第3页
专题07 相似三角形中的重要模型-手拉手模型(解析版)_第4页
专题07 相似三角形中的重要模型-手拉手模型(解析版)_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题07相似三角形中的重要模型-手拉手模型相似三角形是初中几何中的重要的内容,常常与其它知识点结合以综合题的形式呈现,其变化很多,是中考的常考题型。手拉手模型相似是手拉手模型当中相对于手拉手全等模型较难的一种模型,在实际的应用和解题当中出现时,对于同学们来说,都比较困难。而深入理解模型内涵,灵活运用相关结论可以显著提高解题效率,本专题重点讲解相似三角形的“手拉手”模型(旋转模型)。手拉手相似证明题一般思路方法:①由线段乘积相等转化成线段比例式相等;②分子和分子组成一个三角形、分母和分母组成一个三角形;③第②步成立,直接从证这两个三角形相似,逆向证明到线段乘积相等;④第②步不成立,则选择替换掉线段比例式中的个别线段,之后再重复第③步。模型1.“手拉手”模型(旋转模型)【模型解读与图示】“手拉手”旋转型定义:如果将一个三角形绕着它的项点旋转并放大或缩小(这个顶点不变),我们称这样的图形变换为旋转相似变换,这个顶点称为旋转相似中心,所得的三角形称为原三角形的旋转相似三角形。1)手拉手相似模型(任意三角形)条件:如图,∠BAC=∠DAE=,;结论:△ADE∽△ABC,△ABD∽△ACE;.2)手拉手相似模型(直角三角形)条件:如图,,(即△COD∽△AOB);结论:△AOC∽△BOD;,AC⊥BD,.3)手拉手相似模型(等边三角形与等腰直角三角形)条件:M为等边三角形ABC和DEF的中点;结论:△BME∽△CMF;.条件:△ABC和ADE是等腰直角三角形;结论:△ABD∽△ACE.例1.(2022·山西·寿阳县九年级期末)问题情境:如图1所示,在△ABC中,D、E分别是AB、AC上的点,DEBC,在图1中将ADE绕A点顺时针旋转一定角度,得到图2,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图3,请解答下列问题:(1)猜想证明:若AB=AC,请探究下列数量关系:①在图2中,BD与CE的数量关系是_________.②在图3中,猜想∠MAN与∠BAC的数量关系,并证明你的猜想;(2)拓展应用:其他条件不变,若AB=AC,按上述操作方法,得到图4,请你继续探究:∠MAN与∠BAC的数量关系?AM与AN的数量关系?直接写出你的猜想.【答案】(1)①BD=CE;②∠MAN=∠BAC,见解析(2)∠MAN=∠BAC,AM=AN【分析】(1)①根据题意和旋转的性质可知△AEC≌△ADB,所以BD=CE;②根据题意可知∠CAE=BAD,AB=AC,AD=AE,所以得到△BAD≌△CAE,在△ABM和△ACN中,DM=BD,EN=CE,可证△ABM≌△ACN,所以AM=AN,即∠MAN=∠BAC.(2)直接类比(1)中结果可知AM=AN,∠MAN=∠BAC.(1)①∵DE∥BC∴△BAC∽△DAE∵AB=AC,∴AD=AE∵由旋转可得:∠BAC=∠DAE,∴∠CAE=∠BAD∴△BAD≌△CAE∴BD=CE,②∠MAN=∠BAC理由:如图1,∵DE∥BC∴△BAC∽△DAE∵AB=AC,∴AD=AE∵由旋转可得:∠BAC=∠DAE,∴∠CAE=∠BAD∴△BAD≌△CAE∴BD=CE,∠ACE=∠ABD∵DM=BD,EN=CE∴BM=CN△ABM≌△ACN∴∠BAM=∠CAN∴∠BAM-∠CAM=∠CAN-∠CAM即∠MAN=∠BAC;(2)结论:∠MAN=∠BAC,AM=AN∵△ABC∽△ADE,∴∴∵∠CAE=∠DAE+∠CAD,∠BAD=∠BAC+∠CAD,∴∠CAE=∠BAD,∴△ADB∽△AEC,∴∵DM=BD,EN=CE∵∠ADM=∠ABD+∠BAD,∠AEN=∠ACE+∠CAE,∴∠ADM=∠AEN,∴△ADM∽△AEN,∴AM:AN=AD:AE=,∴∠DAM=∠EAN,∴∠NAE+∠MAE=∠NAE+∠MAE,∴∠MAN=∠DAE,∵∠DAE=∠BAC,∴∠MAN=∠BAC.AM=k•AN,∠MAN=∠BAC.【点睛】本题考查了旋转的性质,相似三角形的性质与判定,全等三角形的性质与判定,掌握旋转的性质是解题的关键.例2.(2022•新乡中考模拟)在△ABC中,CA=CB=m,在△AED中,DA=DE=m,请探索解答下列问题.【问题发现】(1)如图1,若∠ACB=∠ADE=90°,点D,E分别在CA,AB上,则CD与BE的数量关系是,直线CD与BE的夹角为;【类比探究】(2)如图2,若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图2所示的位置,则CD与BE之间是否满足(1)中的数量关系?说明理由.【拓展延伸】(3)在(1)的条件下,若m=2,将△AED绕点A旋转过程中,当B,E,D三点共线.请直接写出CD的长.【分析】(1)根据等腰直角三角形的性质得到AB=AC=m,AE=AD=m,计算即可;(2)过点C作CH⊥AB于H,延长CD、BE交于点F,根据直角三角形的性质得到AB=AC,AE=AD,证明△CAD∽△BAE,根据相似三角形的性质解答即可;(3)分点E在线段BD上、点D在线段BE上两种情况,根据相似三角形的性质计算即可.【解答】解:(1)∵∠ACB=∠ADE=90°,CA=CB,DA=DE,∴∠A=∠B=∠DEA=45°,∴AB=AC=m,AE=AD=m,∴CD=AC﹣AD=m,BE=AB﹣AE=m,∴BE=CD,∵∠A=45°,∴直线CD与BE的夹角为45°,故答案为:BE=CD,45°;(2)不满足,BE=CD,直线CD与BE的夹角为30°,理由如下:如图2,过点C作CH⊥AB于H,延长CD、BE交于点F,∵CA=CB,∴AH=HB,∵∠ACB=∠ADE=120°,CA=CB,DA=DE,∴∠CAB=∠CBA=30°,∠DAE=∠DEA=30°,∴AC=2CH,∠CAD=∠BAE,由勾股定理得:AH=AC,∴AB=AC,同理可得:AE=AD,∴=,∵∠CAD=∠BAE,∴△CAD∽△BAE,∴==,∠ACD=ABE,∴BE=CD,∠F=∠CAB=30°,∴BE=CD,直线CD与BE的夹角为30°;(3)如图3,点E在线段BD上,∵m=2,∴AD=DE=1,AB=2,由勾股定理得:BD==,∴BE=BD﹣DE=﹣1,∴CD=BE=,如图4,点D在线段BE上,BE=BD+DE=+1,∴CD=BE=,综上所述:当B,E,D三点共线.CD的长为或.【点评】本题考查的是相似三角形的判定和性质、直角三角形的性质、等腰三角形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.例3.(2022·山东·九年级课时练习)【问题发现】如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为斜边BC上一点(不与点B,C重合),将线段AD绕点A顺时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是______,位置关系是______;【探究证明】如图2,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,将△ADE绕点A旋转,当点C,D,E在同一条直线上时,BD与CE具有怎样的位置关系,说明理由;【拓展延伸】如图3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,过点C作CA⊥BD于A.将△ACD绕点A顺时针旋转,点C的对应点为点E.设旋转角∠CAE为(0°<<360°),当C,D,E在同一条直线上时,画出图形,并求出线段BE的长度.【答案】BD=CE,BD⊥CE;BD⊥CE,理由见解析;图见解析,【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接BD,根据全等三角形的判定和性质以及垂直的定义即可得到结论;(3)如图3,过A作AF⊥EC,根据相似三角形的判定和性质以及勾股定理即可得到结论.【详解】解:(1)BD=CE,BD⊥CE;(2)BD⊥CE.理由如下:在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,∠AEC=45°,∵∠CAB=∠DAE=90°,∴∠BAD=∠CAE,∴△CEA≌△BDA,∴∠BDA=∠AEC=45°,∴∠BDE=∠BDA+∠ADE=90°,∴BD⊥CE.(3)如图所示,过点A作AF⊥CE,垂足为点F.根据题意可知,Rt△ABC∽Rt△AED,∠BAC=∠EAD,∴,∴.∵∠BAC=∠EAD=90°,∴∠BAE=∠CAD,∴△BAE∽△CAD,∴∠BEA=∠CDA,∠BEC+∠DEA=∠DEA+90°,∴∠BEC=90°,∴BE⊥CE.在旋转前,在Rt△BCD中,∠BCD=90°,BC=2CD=4,∴,∵AC⊥BD,∴,∴.∴,在Rt△ACD中,CD边上的高,旋转后,得,∴.【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识点,关键是添加恰当辅助线.例4.(2022·山东·东营市一模)【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC与∠ACN的数量关系,并说明理由.【答案】(1)证明见解析;(2)成立,理由见解析;(3)∠ABC=∠CAN,理由见解析.【分析】(1)利用SAS可证明△BAM≌△CAN,继而得出结论.(2)也可以通过证明△BAM≌△CAN,得出结论,和(1)的思路完全一样.(3)首先得出∠BAC=∠MAN,从而判定△ABC∽△AMN,得到,根据∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,从而判定△BAM∽△CAN,得出结论.【详解】解:(1)证明:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°.∴∠BAM=∠CAN.∵在△BAM和△CAN中,,∴△BAM≌△CAN(SAS).∴∠ABC=∠ACN.(2)结论∠ABC=∠ACN仍成立.理由如下:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°.∴∠BAM=∠CAN.∵在△BAM和△CAN中,,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.(3)∠ABC=∠ACN.理由如下:∵BA=BC,MA=MN,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC∽△AMN,∴,又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.例5.(2022•长垣市一模)在△ABC中,AB=AC,点D为AB边上一动点,∠CDE=∠BAC=α,CD=ED,连接BE,EC.(1)问题发现:如图①,若α=60°,则∠EBA=,AD与EB的数量关系是;(2)类比探究:如图②,当α=90°时,请写出∠EBA的度数及AD与EB的数量关系并说明理由;(3)拓展应用:如图③,点E为正方形ABCD的边AB上的三等分点,以DE为边在DE上方作正方形DEFG,点O为正方形DEFG的中心,若OA=,请直接写出线段EF的长度.【分析】(1)证明△ACD≌△BCE(SAS),得AD=EB,∠CBE=∠A=60°,则∠EBA=∠ABC+∠CBE=120°;(2)证△DEC∽△ABC,∠BCE=∠ACD,得,再证△BCE∽△ACD,得∠EBC=∠DAC=90°,=,则∠EBA=∠EBC+∠ABC=135°,进而得出结论;(3)连接BD,①当AE=AB时,证△AOD∽△BED,得,求出AB=3=AD,则AE=1,在Rt△AED中,由勾股定理求出ED=即可;②当BE=AB时,同①得:,求出AB=6=AD,则AE=4,在Rt△AED中,由勾股定理得ED=2即可.【解答】解:(1)∵α=60°,∴∠ABC=α=60°,∠CDE=α=60°,∵AB=AC,CD=ED,∴△ABC和△CDE是等边三角形,∴AC=BC,CD=CE,∠ABC=∠ACB=∠A=∠DCE=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=EB,∠CBE=∠A=60°,∴∠EBA=∠ABC+∠CBE=120°,故答案为:120°,AD=EB;(2)∠EBA=135°,EB=AD,理由如下:∵α=90°,∴∠CDE=∠BAC=90°,∵CD=ED,AB=AC,∴∠DEC=∠DCE=∠ABC=∠ACB=45°,∴△DEC∽△ABC,∠BCE=∠ACD,∴,∴,∴△BCE∽△ACD,∴∠EBC=∠DAC=90°,,∴∠EBA=∠EBC+∠ABC=90°+45°=135°,∵,∴,∴EB=AD;(3)连接BD,分两种情况:①当AE=AB时,如图③所示:∵四边形DEFG是正方形,∴EF=ED,对角线FD与EG互相垂直平分,∴△DEO是等腰直角三角形,∴=sin45°=,在Rt△ABD中,=sin45°=,∴,∵∠ODA+∠ADE=45°=∠BDE+∠ADE,∴∠ODA=∠BDE,∴△AOD∽△BED,∴,∴,∵OA=,∴AB=3=AD,∴AE=AB=1,在Rt△AED中,由勾股定理得:ED===,∴EF=ED=;②当BE=AB时,如图④所示:同①得:,∴,∵OA=,∴AB=6=AD,∴AE=AB=4,在Rt△AED中,由勾股定理得:ED===2,∴EF=ED=2;综上所述,线段EF的长度为或2.【点评】本题是四边形综合题目,考查了正方形的性质、等边三角形的判定与性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、锐角三角函数定义等知识;本题综合性强,熟练掌握正方形的性质、等边三角形的判定与性质,证明三角形全等和三角形相似是解题的关键.例6.(2022·成都市·九年级课时练习)一次小组合作探究课上,老师将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现且.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形绕点A按逆时针方向旋转(如图1),还能得到吗?若能,请给出证明,请说明理由;(2)把背景中的正方形分别改成菱形和菱形,将菱形绕点A按顺时针方向旋转(如图2),试问当与的大小满足怎样的关系时,;(3)把背景中的正方形分别改写成矩形和矩形,且,,(如图3),连接,.试求的值(用a,b表示).【答案】(1)见解析;(2)当时,,理由见解析;(3).【分析】(1)由正方形的性质得出,,,,得出,则可证明,从而可得出结论;(2)由菱形的性质得出,,则可证明,由全等三角形的性质可得出结论;(3)设与交于Q,与交于点P,证明,得出,得出,连接,,由勾股定理可求出答案.【详解】(1)∵四边形为正方形,∴,,又∵四边形为正方形,∴,,∴∴,在△AEB和△AGD中,,∴,∴;(2)当时,,理由如下:∵,∴∴,又∵四边形和四边形均为菱形,∴,,在△AEB和△AGD中,,∴,∴;(3)设与交于Q,与交于点P,由题意知,,∵,,∴,∴,∵,∴,∴,连接,,∴,∵,,,∴,,在Rt△EAG中,由勾股定理得:,同理,∴.【点睛】本题考查了矩形、菱形、正方形的性质,三角形全等的判定与性质,三角形相似的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.由(3)可得结论:当四边形的对角线相互垂直时,四边形两组对边的平方和相等.课后专项训练1.如图,在△ABC与△ADE中,∠ACB=∠AED=90°,∠ABC=∠ADE,连接BD、CE,若AC:BC=3:4,则BD:CE为()A.5:3 B.4:3 C.5:2 D.2:3【答案】A【解析】∵∠ACB=∠AED=90°,∠ABC=∠ADE,∴△ABC∽△ADE,∴∠BAC=∠DAE,ACAB∵∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠BAD,∵ACAB=AEAD,∴△ACE∽△∵AC:BC=3:4,∠ACB=∠AED=90°,∴AC:BC:AB=3:4:5,∴BD:CE=5:3,选A.2.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB与DE交于点O,AB=4,AC=3,F是DE的中点,连接BD,BF,若点E是射线CB上的动点,下列结论:①△AOD∽△FOB,②△BOD∽△EOA,③∠FDB+∠FBE=90°,④BF=56A.①② B.③④ C.②③ D.②③④【答案】D【解析】∵△ABC∽△ADE,∴∠ADO=∠OBE,∵∠AOD=∠BOE,∴△AOD∽△EOB,∴ODOB∴ODOA=OBOE,∵∠BOD=∠AOE,∴△BOD∽△∵△AOD∽△EOB,△BOD∽△EOA,∴∠ADO=∠EBO,∠AEO=∠DBO,∵∠ADO+∠AEO=90°,∴∠DBE=∠DBO+∠EBO=90°,∵DF=EF,∴FD=FB=FE,∴∠FDB=∠FBD,∴∠FDB+∠FBE=∠FBD+∠FBE=90°,故③正确,在Rt△ABC中,∵AB=4,AC=3,∴BC=3∵△ABC∽△ADE,∴DEAE=BCAC=53,∵BF=12DE∵∠ADO=∠OBE,∴∠ADO≠∠OBF,∴无法判断△AOD∽△FOB,故①错误.选D.3、如图,正方形的边长为8,线段绕着点逆时针方向旋转,且,连接,以为边作正方形,为边的中点,当线段的长最小时,______.【分析】连接BD,BF,FD,证明△EBC∽△FBD,根据题意,知道M,F,D三点一线时,FM最小,然后过点M作MG⊥BD,垂足为G,根据等腰直角三角形的性质、勾股定理分别求出MG和DG的长,再根据正切的定义计算即可.【详解】解:连接BD,BF,FD,如图,∵,∴,∵∠FBD+∠DBE=45°,∠EBC+∠DBE=45°,∴∠FBD=∠EBC,∴△EBC∽△FBD,∴∠FDB=∠ECB,,∴DF=,由题意知:FM、DF、DM三条线段满足FM+DF≥MD,其中DM、DF的值一定,∴当M,F,D三点一线时,FM最小,过点M作MN⊥BD,垂足为G,∵∠MBN=45°,BM=AB=4,∴MN=BN=2,∵MD==4,∴DG==6,∴=,故答案为:.【点拨】本题考查了正方形的性质,手拉手相似模型,锐角三角函数,勾股定理,三角形面积,线段最值模型,熟练构造相似模型,准确确定线段最小值的条件是解题的关键.4.(2022•虹口区期中)如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.【分析】(1)由∠BAD=∠CAE,可得∠BAC=∠DAE,又有∠ABC=∠ADE,即可得出相似;(2)有(1)中可得对应线段成比例,又有以对应角相等,即可判定其相似.【解答】证明:(1)∵∠BAD=∠CAE,∴∠BAC=∠DAE,∵∠ABC=∠ADE,∴△ABC∽△ADE.(2)△ABD∽△ACE.证明:由(1)知△ABC∽△ADE,∴,∴AB×AE=AC×AD,∴,∵∠BAD=∠CAE,∴△ABD∽△ACE.【点评】本题主要考查了相似三角形的判定及性质问题,应熟练掌握.5.(2023·浙江·九年级课时练习)在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,求证:PA=DC;(2)如图2,当α=120°时,猜想PA和DC的数量关系并说明理由.(3)当α=120°时,若AB=6,BP=,请直接写出点D到CP的距离.【答案】(1)见解析;(2);(3)或【分析】(1)当α=60°时,△ABC和△PBD为等边三角形,根据三角形全等即可求证;(2)过点作,求得,根据题意可得,可得,再根据,判定,得到,即可求解;(3)过点作于点,过点作于点,分两种情况进行讨论,当在线段或当在线段延长线上时,设根据勾股定理求解即可.【详解】解:(1)当α=60°时,∵AB=AC∴△ABC为等边三角形,∴,由旋转的性质可得:,∴△PBD为等边三角形∴,∴在和中∴∴(2)过点作,如下图:∵当α=120°时,∴,∴由勾股定理得∴∴由旋转的性质可得:,∴,又∵∴又∵,∴∴∴∴(3)过点作于点,过点作于点,则点D到CP的距离就是的长度当在线段上时,如下图:由题意可得:∵α=120°,∴在中,,∴,在中,,,∴∴,由(2)得由旋转的性质可得:设,则由勾股定理可得:即,解得则当在线段延长线上,如下图:则,由(2)得,设,则由勾股定理可得:即,解得则综上所述:点D到CP的距离为或【点睛】此题考查了旋转的性质、全等三角形的判定及性质、相似三角形的判定及性质、等腰三角形的性质以及勾股定理,综合性比较强,熟练掌握相关基本性质是解题的关键.6.(2022·重庆·九年级课时练习)观察猜想(1)如图1,在等边中,点M是边上任意一点(不含端点B、C),连接,以为边作等边,连接,则与的数量关系是______.(2)类比探究:如图2,在等边中,点M是延长线上任意一点(不含端点C),(1)中其它条件不变,(1)中结论还成立吗?请说明理由.(3)拓展延伸:如图3,在等腰中,,点M是边上任意一点(不含端点B、C),连接,以为边作等腰,使顶角.连按.试探究与的数量关系,并说明理由.【答案】(1)(2)成立(3)【分析】(1)利用可证明,继而得出结论;(2)也可以通过证明,得出结论,和(1)的思路完全一样.(3)首先得出,从而判定,得到,根据,,得到,从而判定,得出结论.(1)证明:、是等边三角形,,,,,在和中,,,.(2)解:结论仍成立;理由如下:、是等边三角形,,,,,在和中,,,.(3)解:;理由如下:,,∴,又∵,,∴,,又,,,,.【点睛】本题是三角形综合题,考查了相似三角形的判定与性质、全等三角形的判定与性质,解答本题的关键是仔细观察图形,找到全等(相似)的条件,利用全等(相似)的性质证明结论.7.(2022·江苏·九年级课时练习)【问题发现】如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为斜边BC上一点(不与点B,C重合),将线段AD绕点A顺时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是______,位置关系是______;【探究证明】如图2,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,将△ADE绕点A旋转,当点C,D,E在同一条直线上时,BD与CE具有怎样的位置关系,说明理由;【拓展延伸】如图3,在Rt△BCD中,∠BCD=90°,BC=2CD=4,过点C作CA⊥BD于A.将△ACD绕点A顺时针旋转,点C的对应点为点E.设旋转角∠CAE为(0°<<360°),当C,D,E在同一条直线上时,画出图形,并求出线段BE的长度.【答案】BD=CE,BD⊥CE;BD⊥CE,理由见解析;图见解析,【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接BD,根据全等三角形的判定和性质以及垂直的定义即可得到结论;(3)如图3,过A作AF⊥EC,根据相似三角形的判定和性质以及勾股定理即可得到结论.【详解】解:(1)BD=CE,BD⊥CE;(2)BD⊥CE.理由如下:在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,∠AEC=45°,∵∠CAB=∠DAE=90°,∴∠BAD=∠CAE,∴△CEA≌△BDA,∴∠BDA=∠AEC=45°,∴∠BDE=∠BDA+∠ADE=90°,∴BD⊥CE.(3)如图所示,过点A作AF⊥CE,垂足为点F.根据题意可知,Rt△ABC∽Rt△AED,∠BAC=∠EAD,∴,∴.∵∠BAC=∠EAD=90°,∴∠BAE=∠CAD,∴△BAE∽△CAD,∴∠BEA=∠CDA,∠BEC+∠DEA=∠DEA+90°,∴∠BEC=90°,∴BE⊥CE.在旋转前,在Rt△BCD中,∠BCD=90°,BC=2CD=4,∴,∵AC⊥BD,∴,∴.∴,在Rt△ACD中,CD边上的高,旋转后,得,∴.【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识点,关键是添加恰当辅助线.8.(2022·山东·九年级课时练习)如图,和是有公共顶点直角三角形,,点P为射线,的交点.(1)如图1,若和是等腰直角三角形,求证:;(2)如图2,若,问:(1)中的结论是否成立?请说明理由.(3)在(1)的条件下,,,若把绕点A旋转,当时,请直接写出的长度【答案】(1)见解析;(2)成立,理由见解析;(3)PB的长为或.【分析】(1)由条件证明△ABD≌△ACE,即可得∠ABD=∠ACE,可得出∠BPC=90°,进而得出BD⊥CP;(2)先判断出△ADB∽△AEC,即可得出结论;(3)分为点E在AB上和点E在AB的延长线上两种情况画出图形,然后再证明△PEB∽△AEC,最后依据相似三角形的性质进行证明即可.【详解】解:(1)证明:如图,∵∠BAC=∠DAE=90°,∴∠BAE+∠CAE=∠BAD+∠BAE,即∠BAD=∠CAE.∵和是等腰直角三角形,∴,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ACF+∠AFC=90°,∴∠ABP+∠BFP=90°.∴∠BPF=90°,∴BD⊥CP;(1)中结论成立,理由:在Rt△ABC中,∠ABC=30°,∴AB=AC,(2)在Rt△ADE中,∠ADE=30°,∴AD=AE,∴∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ADB∽△AEC.∴∠ABD=∠ACE同(1)得;(3)解:∵和是等腰直角三角形,∴,①当点E在AB上时,BE=AC-AE=1.∵∠EAC=90°∴CE=.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴∴.∴PB=.②当点E在BA延长线上时,BE=5.∵∠EAC=90°,∴CE=5.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC.∴.∴.∴PB=.综上所述,PB的长为或.【点睛】此题主要考查的是旋转的性质、等腰三角形的性质、全等三角形的性质和判定、相似三角形的性质和判定,证明得△PEB∽△AEC是解题的关键.9.(2023·广东·深圳市九年级期中)(1)如图1,Rt△ABC与Rt△ADE,∠ADE=∠ABC=90°,,连接BD,CE.求证:.(2)如图2,四边形ABCD,∠BAD=∠BCD=90°,且,连接BC,BC、AC、CD之间有何数量关系?小明在完成本题中,如图3,使用了“旋转放缩”的技巧,即将△ABC绕点A逆时针旋转90°,并放大2倍,点B对应点D.点C落点为点E,连接DE,请你根据以上思路直接写出BC,AC,CD之间的关系.(3)拓展:如图4,矩形ABCD,E为线段AD上一点,以CE为边,在其右侧作矩形CEFG,且,AB=5,连接BE,BF.求BE+BF的最小值.【答案】(1)见解析;(2);(3)【分析】(1)根据已知条件直接证明,再证明,从而可得,设,则,根据勾股定理求得,求得,即可得证;(2)根据题意可知,,设则,求得,分别求得,根据,即可求得;(3)根据(2)的方法,旋转放缩,缩小为原来的,使得的落点为,的落点为,过点作于点,交的延长线于点,作点关于的对称点,连接,则,当点三点共线时,取等于号,接下来根据相似的性质分别求得各边的长度,最后根据勾股定理求得即可求得最小值【详解】(1)∠ADE=∠ABC=90°,即设,则,(2)∠BAD=∠BCD=90°,且将△ABC绕点A逆时针旋转90°,并放大2倍,点B对应点D.点C落点为点E,,,三点共线,,设则(3)如图,设,将绕点逆时针旋转,并缩小为原来的,使得的落点为,的落点为,过点作于点,交的延长线于点,作点关于的对称点,连接则,当点三点共线时,取等于号由作图知:,且,,AB=5,四边形是矩形在中在中,四边形是矩形,四边形是矩形,在中,的最小值为【点睛】本题考查了三角形相似的性质与判定,旋转放缩法构造相似三角形,线段和最值问题,勾股定理,正确的作出图形和辅助线是解题的关键.10.(2023·绵阳市·九年级专题练习)在△ABC中,AB=AC,∠BAC=α,点P是△ABC外一点,连接BP,将线段BP绕点P逆时针旋转α得到线段PD,连接BD,CD,AP.观察猜想:(1)如图1,当α=60°时,的值为,直线CD与AP所成的较小角的度数为°;类比探究:(2)如图2,当α=90°时,求出的值及直线CD与AP所成的较小角的度数;拓展应用:(3)如图3,当α=90°时,点E,F分别为AB,AC的中点,点P在线段FE的延长线上,点A,D,P三点在一条直线上,BD交PF于点G,CD交AB于点H.若CD=2+,求BD的长.【答案】(1)1,60;(2),直线CD与AP所成的较小角的度数为45°;(3)BD=.【分析】(1)根据α=60°时,△ABC是等边三角形,再证明△PBA≌△DBC,即可求解,再得到直线CD与AP所成的度数;(2)根据等腰直角三角形的性质证明△PBA∽△DBC,再得到=,再根据相似三角形的性质求出直线CD与AP所成的度数;(3)延长CA,BD相交于点K,根据直角三角形斜边上的中线性质及中位线定理证得∠BCD=∠KCD,由(2)的结论求出AP的长,再利用在Rt△PBD中,设PB=PD=x,由勾股定理可得BD=x=AD,再列出方程即可求出x,故可得到BD的长.【详解】(1)∵α=60°,AB=AC,∴△ABC是等边三角形,∴AB=CB∵将线段BP绕点P逆时针旋转α得到线段PD,∴△BDP是等边三角形,∴BP=BD∵∠PBA=∠PBD-∠ABD=60°-∠ABD,∠DBC=∠ABC-∠ABD=60°-∠ABD,∴∠PBA=∠DBC∴△PBA≌△DBC,∴AP=CD∴=1如图,延长CD交AB,AP分别于点G,H,则∠AHC为直线CD与AP所成的较小角,∵△PBA≌△DBC∴∠PAB=∠DCB∵∠HGA=∠BGC∴∠AHC=∠ABC=60°故答案为:1,60;(2)解:如图,延长CD交AB,AP分别于点M,N,则∠ANC为直线CD与AP所成的较小角,∵AB=AC,∠BAC=90°,∴∠ABC=45°.在Rt△ABC中,=cos∠ABC=cos45°=.∵PB=PD,∠BPD=90°,∴∠PBD=∠PDB=45°.在Rt△PBD中,=cos∠PBD=cos45°=.∴=,∠ABC=∠PBD.

∴∠ABC-∠ABD=∠PBD-∠ABD.即∠PBA=∠DBC.∴△PBA∽△DBC.∴==,∠PAB=∠DCB.

∵∠AMN=∠CMB,∴∠ANC=∠ABC=45°.

即=,直线CD与AP所成的较小角的度数为45°.(3)延长CA,BD相交于点K,如图.∵∠APB=90°,E为AB的中点,∴EP=EA=EB.∴∠EAP=∠EPA,∠EBP=∠EPB.∵点E,F为AB,AC的中点,∴PFBC.∴∠AFP=∠ACB=∠PBD=45°.

∵∠BGP=∠FGK,∴∠BPE=∠K.∴∠K=∠EBP,∵∠EBP=∠PEB,∠PEB=∠DBC,∴∠K=∠CBD.∴CB=CK.∴∠BCD=∠KCD.由(2)知∠ADC=∠PDB=45°,△PBA∽△DBC,∴∠PAB=∠DCB.∴∠BDC=180°-45°-45°=90°=∠BAC.∵∠BHD=∠CHA,∴∠DBA=∠DCA.∴∠DBA=∠PAB.∴AD=BD.由(2)知DC=AP,∴AP=.在Rt△PBD中,PB=PD=x,由勾股定理可得BD==x=AD.∴AD+PD=x+x=AP=1+.∴x=1.∴BD=.【点睛】此题主要考查四边形综合,解题的关键熟知旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质及解直角三角形的方法.11.(2023·湖北·九年级专题练习)在和中,,,且,点E在的内部,连接EC,EB,EA和BD,并且.【观察猜想】(1)如图①,当时,线段BD与CE的数量关系为__________,线段EA,EB,EC的数量关系为__________.【探究证明】(2)如图②,当时,(1)中的结论是否依然成立?若成立,请给出证明,若不成立,请说明理由;【拓展应用】(3)在(2)的条件下,当点E在线段CD上时,若,请直接写出的面积.【答案】(1),;(2)不成立,理由见解析;(3)2【分析】(1)由△DAB≌△EAC(SAS),可得BD=EC,∠ABD=∠ACE,由∠ACE+∠ABE=90°,推出∠ABD+∠ABE=90°,可得∠DBE=90°,由此即可解决问题;(2)结论:EA2=EC2+2BE2.由题意△ABC,△ADE都是等腰直角三角形,想办法证明△DAB∽△EAC,推出=,∠ACE=∠ABD,可得∠DBE=90°,推出DE2=BD2+BE2,即可解决问题;(3)首先证明AD=DE=EC,设AD=DE=EC=x,在Rt△ADC中,利用勾股定理即可解决问题;【详解】(1)如图①中,∵BA=BC,DA=DE.且∠ABC=∠ADE=60°,∴△ABC,△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,∴△DAB≌△EAC(SAS),∴BD=EC,∠ABD=∠ACE,∵∠ACE+∠ABE=90°,∴∠ABD+∠ABE=90°,∴∠DBE=90°,∴DE2=BD2+BE2,∵EA=DE,BD=EC,∴EA2=BE2+EC2.故答案为:BD=EC,EA2=EB2+EC2.(2)结论:EA2=EC2+2BE2.理由:如图②中,∵BA=BC,DA=DE.且∠ABC=∠ADE=90°,∴△ABC,△ADE都是等腰直角三角形,∴∠DAE=∠BAC=45°,∴∠DAB=∠EAC∵=,=,∴,∴△DAB∽△EAC,∴=,∠ACE=∠ABD,∵∠ACE+∠ABE=90°,∴∠ABD+∠ABE=90°,∴∠DBE=90°,∴DE2=BD2+BE2,∵EA=DE,BD=EC,∴EA2=EC2+BE2,∴EA2=EC2+2BE2.(3)如图③中,∵∠AED=45°,D,E,C共线,∴∠AEC=135°,∵△ADB∽△AEC,∴∠ADB=∠AEC=135°,∵∠ADE=∠DBE=90°,∴∠BDE=∠BED=45°,∴BD=BE,∴DE=BD,∵EC=BD,∴AD=DE=EC,设AD=DE=EC=x,在Rt△ABC中,∵AB=BC=2,∴AC=2,在Rt△ADC中,∵AD2+DC2=AC2,∴x2+4x2=40,∴x=2(负根已经舍弃),∴AD=DE=2,∴BD=BE=2,∴S△BDE=×2×2=2.【点睛】本题属于三角形综合题,考查了等边三角形的判定和性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.12.(2023··广西一模)如图,和均为等腰直角三角形,.现将绕点C旋转.(1)如图1,若三点共线,,求点B到直线的距离;(2)如图2,连接,点F为线段的中点,连接,求证:;(3)如图3,若点G在线段上,且,在内部有一点O,请直接写出的最小值.【答案】(1);(2)证明见解析;(3).【分析】(1)由旋转性质易证,从而可得,,再求的CE边高即可;(2)通过倍长中线构造,得,由即可证明;(3)利用费马点模型构造图形,过点G作,且,过点G作,且,可得,,将问题由转化为两点之间距离最短即可解答.【详解】解:(1)∵,,∴,∴,又∵,,∴(SAS),∴,,∵,,∴,∵若三点共线,∴,如图,过B点作BH⊥CE交CE延长线于点H,∴,∴,即:点B到直线的距离为;(2)延长CF到N,使FN=CF,连接BN,∵FD=FB,,∴(SAS)∴,∵,∴,又∵,∴,∴,又∵,,∴(SAS),∴,又∵,∴,∴,即,(3)的最小值为;过程如下:如解图3,过点G作,且,过点G作,且,连接OC、、,∴,,∴,∵,∴,∴,即,∵,∴,∵,仅当C、O、、在同一条直线上等号成立;如解图4,过点作,垂足为H,过点作,垂足为P,∵,∴,,∵,∴,∴,∵,∴,∴,,∴,,∴,∴,∴的最小值为:,∴的最小值为.【点睛】本题是三角形综合题,涉及了三角形旋转全等和旋转相似的综合、解三角形等知识点,解(2)关键是倍长中线构造三角形全等证明;解(3)关键是掌握费马点求最值模型,利用旋转转化线段关系.13.(2022•南山区校级一模)(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DG所夹锐角的度数为.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3)【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=10,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).【分析】(1)连接AF,由正方形的性质可得点A、F、C三点共线,AC=,AF=AG,从而得出答案;(2)连接AF,AC,利用△CAF∽△DAG,得CF=DG,∠ACF=∠ADG,从而解决问题;(3)连接CE,利用SAS证明△BAD≌△CAE,得∠ABD=∠ACE=45°,则∠DCE=90°,可知当OE⊥CE时,OE最小,再利用等腰直角三角形的性质求出答案.【解答】解:(1)连接AF,∵四边形AEFG、ABCD是正方形,∴∠GAF=45°,∴点A、F、C三点共线,∴AC=,AF=AG,∴CF=GD,故答案为:CF=GD,45°;(2)仍然成立,连接AF,AC,∵∠CAD=∠FAG=45°,∴∠CAF=∠DAC,,∴△CAF∽△DAG,∴CF=DG,∠ACF=∠ADG,∴∠COD=∠CAD=45°,∴(1)中的结论仍然成立;(3)连接CE,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=45°,∴∠DCE=90°,∴当OE⊥CE时,OE最小,∵AC=10,O为AC的中点.∴OC=5,∵∠OCE=45°,∴OE=OC=,故答案为:.【点评】本题是四边形综合题,主要考查了正方形的性质,等腰直角三角形的性质,相似三角形的判定与性质,全等三角形的判定与性质等知识,熟练掌握旋转型相似是解题的关键.14、某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边中,点是边上任意一点,连接,以为边作等边,连接CQ,BP与CQ的数量关系是________;(2)变式探究:如图2,在等腰中,,点是边上任意一点,以为腰作等腰,使,,连接,判断和的数量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论