![山东省德州市夏津一中2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页](http://file4.renrendoc.com/view12/M0A/1B/19/wKhkGWcUDJOAPyQQAAIY7ybFk9M780.jpg)
![山东省德州市夏津一中2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页](http://file4.renrendoc.com/view12/M0A/1B/19/wKhkGWcUDJOAPyQQAAIY7ybFk9M7802.jpg)
![山东省德州市夏津一中2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页](http://file4.renrendoc.com/view12/M0A/1B/19/wKhkGWcUDJOAPyQQAAIY7ybFk9M7803.jpg)
![山东省德州市夏津一中2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页](http://file4.renrendoc.com/view12/M0A/1B/19/wKhkGWcUDJOAPyQQAAIY7ybFk9M7804.jpg)
![山东省德州市夏津一中2025届高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页](http://file4.renrendoc.com/view12/M0A/1B/19/wKhkGWcUDJOAPyQQAAIY7ybFk9M7805.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省德州市夏津一中2025届高一数学第一学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=+的定义域为()A. B.C. D.2.为了得到函数的图象,可以将函数的图象A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位3.已知集合A={0,1},B={-1,0},则A∩B=()A.0, B.C. D.4.图1是南北方向、水平放置的圭表(一种度量日影长的天文仪器,由“圭”和“表”两个部件组成)示意图,其中表高为h,日影长为l.图2是地球轴截面的示意图,虚线表示点A处的水平面.已知某测绘兴趣小组在冬至日正午时刻(太阳直射点的纬度为南纬)在某地利用一表高为的圭表按图1方式放置后,测得日影长为,则该地的纬度约为北纬()(参考数据:,)A. B.C. D.5.某学校在数学联赛的成绩中抽取100名学生的笔试成绩,统计后得到如图所示的分布直方图,这100名学生成绩的中位数估值为A.80 B.82C.82.5 D.846.已知函数有唯一零点,则()A. B.C. D.17.已知是奇函数,且满足,当时,,则在内是A.单调增函数,且 B.单调减函数,且C.单调增函数,且 D.单调减函数,且8.要证明命题“所有实数的平方都是正数”是假命题,只需()A.证明所有实数的平方都不是正数B.证明平方是正数的实数有无限多个C.至少找到一个实数,其平方是正数D.至少找到一个实数,其平方不是正数9.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式).A.2寸 B.3寸C.4寸 D.5寸10.已知a=log20.3,b=20.3,c=0.30.3,则a,b,c三者的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数f(x)=(a>0,a≠1)是偶函数,则a=_________,则f(x)的最大值为________.12.函数的最大值为().13.下列命题中所有正确的序号是______________①函数最小值为4;②函数的定义域是,则函数的定义域为;③若,则的取值范围是;④若(,),则14.若在幂函数的图象上,则______15.函数y=的单调递增区间是____.16.在正方体中,直线与平面所成角的正弦值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,设α是任意角,α∈R,它的终边OA与单位圆相交于点A,点(1)当A在OB的反向延长线上时,求tanα;(2)当OA⊥OB时,求sin2α.18.已知(其中a为常数,且)是偶函数.(1)求实数m的值;(2)证明方程有且仅有一个实数根,若这个唯一的实数根为,试比较与的大小.19.(1)利用函数单调性定义证明:函数是减函数;(2)已知当时,函数的图象恒在轴的上方,求实数的取值范围.20.已知点,,,.(1)若,求的值;(2)若,求的值.21.已知,(1)当且x是第四象限角时,求的值;(2)若关于x的方程有实数根,求a的最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据分母部位0,被开方数大于等于0构造不等式组,即可解出结果【详解】利用定义域的定义可得,解得,即,故选C【点睛】本题考查定义域的求解,需掌握:分式分母不为0,②偶次根式被开方数大于等于0,③对数的真数大于0.2、D【解析】因为,所以将函数的图象向左平移个单位,选D.考点:三角函数图像变换【易错点睛】对y=Asin(ωx+φ)进行图象变换时应注意以下两点:(1)平移变换时,x变为x±a(a>0),变换后的函数解析式为y=Asin[ω(x±a)+φ];(2)伸缩变换时,x变为(横坐标变为原来的k倍),变换后的函数解析式为y=Asin(x+φ)3、B【解析】利用交集定义直接求解【详解】解:∵集合A={0,1},B={-1,0},∴A∩B={0}故选B【点睛】本题考查交集的求法,考查交集定义,是基础题4、B【解析】由题意有,可得,从而可得【详解】由图1可得,又,所以,所以,所以,该地的纬度约为北纬,故选:5、B【解析】中位数的左边和右边的直方图的面积相等,由此可以估计中位数的值,,中位数为,故选B.6、B【解析】令,转化为有唯一零点,根据偶函数的对称性求解.【详解】因为函数,令,则为偶函数,因为函数有唯一零点,所以有唯一零点,根据偶函数对称性,则,解得,故选:B7、A【解析】先根据f(x+1)=f(x﹣1)求出函数周期,然后根据函数在x∈(0,1)时上的单调性和函数值的符号推出在x∈(﹣1,0)时的单调性和函数值符号,最后根据周期性可求出所求【详解】∵f(x+1)=f(x﹣1),∴f(x+2)=f(x)即f(x)是周期为2的周期函数∵当x∈(0,1)时,>0,且函数在(0,1)上单调递增,y=f(x)是奇函数,∴当x∈(﹣1,0)时,f(x)<0,且函数在(﹣1,0)上单调递增根据函数的周期性可知y=f(x)在(1,2)内是单调增函数,且f(x)<0故选A【点睛】本题主要考查了函数的周期性和函数的单调性,同时考查了分析问题,解决问题的能力,属于基础题8、D【解析】全称命题是假命题,则其否定一定是真命题,判断选项.【详解】命题“所有实数的平方都是正数”是全称命题,若其为假命题,那么命题的否定是真命题,所以只需“至少找到一个实数,其平方不是正数.故选:D9、B【解析】根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.10、D【解析】利用指数函数与对数函数的单调性即可得出大小关系【详解】∵a=log20.3<0,b=20.3>1,c=0.30.3∈(0,1),则a,b,c三者的大小关系是b>c>a.故选:D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】根据偶函数f(-x)=f(x)即可求a值;分离常数,根据单调性即可求最大值,或利用基本不等式求最值.【详解】是偶函数,,则,则,即,则,则,则,当且仅当,即,则时取等号,即的最大值为,故答案为:,12、【解析】利用可求最大值.【详解】因为,即,,取到最小值;所以函数的最大值为.故答案为:.【点睛】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养.13、③④【解析】利用基本不等式可判断①正误;利用抽象函数的定义域可判断②的正误;解对数不等式可判断③;构造函数,函数在上单调递减,结合,求得可判断④.详解】对于①,当时,,由基本不等式可得,当且仅当时,即当时,等号成立,但,故等号不成立,所以,函数,的最小值不是,①错误;对于②,若函数的定义域为,则有,解得,即函数的定义域为,②错误;对于③,若,所以当时,解得:,不满足;当时,解得:,所以的取值范围是,③正确;对于④,令,函数在上单调递减,由得,则,即,故④正确.故答案为:③④.14、27【解析】由在幂函数的图象上,利用待定系数法求出幂函数的解析式,再计算的值【详解】设幂函数,,因为函数图象过点,则,,幂函数,,故答案为27【点睛】本题主要考查了幂函数的定义与解析式,意在考查对基础知识的掌握情况,是基础题15、【解析】设函数,再利用复合函数的单调性原理求解.【详解】解:由题得函数的定义域为.设函数,因为函数的单调递减区间为,单调递增区间为,函数是单调递减函数,由复合函数的单调性得函数y=的单调递增区间为.故答案为:16、【解析】连接AC交BD于O点,设交面于点E,连接OE,则角CEO就是所求的线面角,因为AC垂直于BD,AC垂直于,故AC垂直于面.设正方体的边长为2,则OC=,OE=1,CE,此时正弦值为故答案为.点睛:求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;高二时还会学到空间向量法,可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.面面角一般是要么定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,要么建系来做.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)推导出的坐标,由此能求出;(2)设,则,且,解得,,从而,,由此能求出【详解】解:(1)设是任意角,,它的终边与单位圆相交于点,点在的反向延长线上,所以,;(2)当时,设,则,且,解得,,或,,则,或,,.或故18、(1)(2)【解析】(1)由偶函数的定义得对任意的实数恒成立,进而整理得恒成立,故;(2)设,进而得唯一实数根,使得,即,故,再结合得得答案.【小问1详解】解:因为是偶函数,所以对于任意的实数,有,所以对任意的实数恒成立,即恒成立,所以,即,【小问2详解】解:设,因为当时,,所以在区间上无实数根,当时,因为,,所以,使得,又在上单调递减,所以存在唯一实数根;因为,所以,又,所以,所以.所以19、(1)略;(2)【解析】(1)根据单调性的定义进行证明即可得到结论;(2)将问题转化为在上恒成立求解,即在上恒成立,然后利用换元法求出函数的最小值即可得到所求范围【详解】(1)证明:设,则,∵,∴,∴,∴,∴函数是减函数(2)由题意可得在上恒成立,∴在上恒成立令,因为,所以,∴在上恒成立令,,则由(1)可得上单调递减,∴,∴∴实数的取值范围为【点睛】(1)用定义证明函数单调性的步骤为:取值、作差、变形、定号、结论,其中变形是解题的关键(2)解决恒成立问题时,分离参数法是常用的方法,通过分离参数,转化为求具体函数的最值的问题处理20、(1)(2)【解析】(1)利用列方程,化简求得.(2)利用列方程,结合同角三角函数的基本关系式、二倍角公式、两角差的余弦公式求得正确答案.【小问1详解】,,,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中原-恒基中国沈阳沈北项目营销策划提案课件
- 《雷达系统原理》课件
- 产科超声标准课件
- 物理治疗学练习试题
- 车身判断上复习测试附答案
- 《质点的运动方程》课件
- 合理消费与消费结构课件
- 《癌痛规范化治疗》课件
- 《SPIN销售技巧》课件
- 二零二五年度品牌线上线下整合营销合同
- 高三英语阅读专项训练之说明文(含答案及部分解析)
- 淘汰电机型号汇总
- 小波分析全章节讲解课件
- 中国移动CHBN试题题库大全(含答案)
- 医学课件:介入放射学(全套课件328张)
- 2022年同等学力人员申请硕士学位日语水平统一考试真题
- 病毒性感染性腹泻医学课件
- 水泥搅拌桩记录表格范本
- DL∕T 458-2020 板框式旋转滤网
- 食品添加剂、食品污染物的本底与转化来源
- 短视频:策划制作与运营课件
评论
0/150
提交评论