版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省宁波华茂外国语学校高二数学第一学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程表示的曲线是A.两条直线 B.两条射线C.两条线段 D.一条直线和一条射线2.如果直线与直线垂直,那么的值为()A. B.C. D.23.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是.A.90 B.75C.60 D.454.某考点配备的信号检测设备的监测范围是半径为100米的圆形区域,一名工作人员持手机以每分钟50米的速度从设备正东方向米的处出发,沿处西北方向走向位于设备正北方向的处,则这名工作人员被持续监测的时长为()A.1分钟 B.分钟C.2分钟 D.分钟5.直线的斜率是()A. B.C. D.6.直线被圆截得的弦长为()A.1 B.C.2 D.37.在等比数列中,,,则()A.2 B.4C.6 D.88.在数列中,,,则()A. B.C. D.9.已知数列满足,,令,若对于任意不等式恒成立,则实数t的取值范围为()A. B.C. D.10.已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()A B.C. D.11.【山东省潍坊市二模】已知双曲线的离心率为,其左焦点为,则双曲线的方程为()A. B.C. D.12.抛物线y2=4x的焦点坐标是A.(0,2) B.(0,1)C.(2,0) D.(1,0)二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则不等式的解集为____________14.已知抛物线的准线方程为,在抛物线C上存在A、B两点关于直线对称,设弦AB的中点为M,O为坐标原点,则的值为___________.15.从某校随机抽取某次数学考试100分以上(含100分,满分150分)的学生成绩,将他们的分数数据绘制成如图所示频率分布直方图.若共抽取了100名学生的成绩,则分数在内的人数为___________16.设等差数列的前项和为,且,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是公差不为0的等差数列,,且成等比数列(1)求数列通项公式;(2)设,求数列的前项和18.(12分)已知椭圆,其焦点为,,离心率为,若点满足.(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点,的重心满足:,求实数的取值范围.19.(12分)已知椭圆的离心率为,以坐标原点为圆心,以椭圆M的短半轴长为半径的圆与直线有且只有一个公共点(1)求椭圆M的标准方程;(2)过椭圆M的右焦点F的直线交椭圆M于A,B两点,过F且垂直于直线的直线交椭圆M于C,D两点,则是否存在实数使成立?若存在,求出的值;若不存在,请说明理由20.(12分)已知展开式中,第三项的系数与第四项的系数相等(1)求n的值;(2)求展开式中有理项的系数之和(用数字作答)21.(12分)已知数列的首项,,,.(1)证明:为等比数列;(2)求数列的前项和22.(10分)已知平面内两点.(1)求过点且与直线平行的直线的方程;(2)求线段的垂直平分线方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由,得2x+3y−1=0或.即2x+3y−1=0(x⩾3)为一条射线,或x=4为一条直线.∴方程表示的曲线是一条直线和一条射线.故选D.点睛:在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线在求解方程时要注意变量范围.2、A【解析】根据两条直线垂直列方程,化简求得的值.【详解】由于直线与直线垂直,所以.故选:A3、A【解析】样本中产品净重小于100克的频率为(0.050+0.100)×2=0.3,频数为36,∴样本总数为.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75,∴样本中净重大于或等于98克并且小于104克的产品的个数为120×0.75=90.考点:频率分布直方图.4、C【解析】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,求得直线和圆的方程,利用点到直线的距离公式和圆的弦长公式,求得的长,进而求得持续监测的时长.【详解】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,如图所示,则,,可得,圆记从处开始被监测,到处监测结束,因为到的距离为米,所以米,故监测时长为分钟故选:C.5、D【解析】把直线方程化为斜截式即得【详解】直线方程的斜截式为,斜率为故选:D6、C【解析】利用直线和圆相交所得的弦长公式直接计算即可.【详解】由题意可得圆的圆心为,半径,则圆心到直线的距离,所以由直线和圆相交所得的弦长公式可得弦长为:.故选:C.7、D【解析】由等比中项转化得,可得,求解基本量,由等比数列通项公式即得解【详解】设公比为,则由,得,即故,解得故选:D8、A【解析】根据已知条件,利用累加法得到的通项公式,从而得到.【详解】由,得,所以,所以.故选:A.9、D【解析】根据递推关系,利用裂项相消法,累加法求出,可得,原不等式转化为恒成立求解即可.【详解】,,,由累加法可得,又,,符合上式,,,对于任意不等式恒成立,则,解得.故选:D10、B【解析】根据得到三角形为等腰三角形,然后结合双曲线的定义得到,设,进而作,得出,由此求出结果【详解】因为,所以,即所以,由双曲线的定义,知,设,则,易得,如图,作,为垂足,则,所以,即,即双曲线的离心率为.故选:B11、D【解析】分析:根据题设条件,列出方程,求出,,的值,即可求得双曲线得标准方程详解:∵双曲线的离心率为,其左焦点为∴,∴∵∴∴双曲线的标准方程为故选D.点睛:本题考查双曲线的标准方程,双曲线的简单性质的应用,根据题设条件求出,,的值是解决本题的关键.12、D【解析】的焦点坐标为,故选D.【考点】抛物线的性质【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单几何性质是我们要重点掌握的内容,一定要熟记掌握二、填空题:本题共4小题,每小题5分,共20分。13、【解析】易得函数为奇函数,则不等式即为不等式,利用导数判断函数得单调性,再根据函数得单调性解不等式即可.【详解】解:函数得定义域为R,因为,所以函数为奇函数,则不等式即为不等式,,所以函数在R上是增函数,所以,解得,即不等式的解集为.故答案为:.14、5【解析】先运用点差法得到,然后通过两点距离公式求出结果详解】解:抛物线的准线方程为,所以,解得,所以抛物线的方程为,设点,,,,的中点为,,则,,两式相减得,即,又因为,两点关于直线对称,所以,解得,可得,则,故答案为:515、30【解析】根据频率分布直方图中所以小矩形面积和为1,可得a值,根据总人数和频率,即可得答案.【详解】因为频率分布直方图中所以小矩形面积和为1,所以,解得,所以分数在内的人数为.故答案为:3016、【解析】根据,利用等差数列前项和公式,列方程求出,再由,能求出【详解】等差数列的前项和为,且,,,解得,,,解得,故答案为:10三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设等差数列的公差为,依题意得到方程组,解得、,即可求出数列的通项公式;(2)由(1)可得,再利用分组求和法求和即可;【小问1详解】解:设等差数列的公差为,由题意,得,解得或,因为,所以【小问2详解】解:当时,,所以18、(1)(2)【解析】(1)运用椭圆的离心率公式,结合椭圆的定义可得在椭圆上,代入椭圆方程,求出,,即可求椭圆的方程;(2)设出直线方程,联立直线和椭圆方程,利用根与系数之间的关系、以及向量数量积的坐标表示进行求解即可.【小问1详解】依题意得,点,满足,可得在椭圆上,可得:,且,解得,,所以椭圆的方程为;【小问2详解】设,,,,,,当时,,此时A,B关于y轴对称,则重心为,由得:,则,此时与椭圆不会有两交点,故不合题意,故;联立与椭圆方程,可得,可得,化为,,,①,设的重心,由,可得②由重心公式可得,代入②式,整理可得可得③①式代入③式并整理得,则,,令,则,可得,,,.【点睛】本题主要考查椭圆的方程以及直线和椭圆的位置关系的应用,利用消元法转化为一元二次方程形式是解决本题的关键.19、(1)(2)存在,【解析】(1)求出后可得椭圆的标准方程.(2)设直线,联立直线方程和椭圆方程,消元后利用韦达定理可用表示,从而可求的值.【小问1详解】据题意,得,∴,∴所求椭圆M的标准方程为【小问2详解】据(1)求解知,点F坐标为若直线的斜率存在,且不等于0,设直线据得设,则,∴同理可求知,∴,∴,即此时存满足题设;若直线的斜率不存在,则;若直线的斜率为0,则,此时若,则综上,存在实数,且使20、(1)8;(2).【解析】(1)由题设可得,进而写出第三、四项的系数,结合已知列方程求n值即可.(2)由(1)有,确定有理项的对应k值,进而求得对应项的系数,即可得结果.小问1详解】由题意,二项式展开式的通项公式所以第三项系数为,第四项系数为,由,解得,即n的值为8【小问2详解】由(1)知:当,3,6时,对应的是有理项当时,展开式中对应的有理项为;当时,展开式中对应的有理项为;当时,展开式中对应的有理项为;故展开式中有理项的系数之和为21、(1)证明见解析(2)【解析】(1)利用等比数列的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部编版五年级语文上册教学计划
- 做2022销售的工作总结怎么写10篇
- 《烈火英雄》观后感
- 语文教师个人教学工作计划
- 《简爱》寒假读书日记10篇
- 2022年的销售工作计划
- 学生会辞职报告模板合集七篇
- 普通高中化学教案教学范文
- 关于工作方案4篇
- 公司学习心得体会15篇
- 食用碱检测报告
- 细胞核的结构和功能说课稿
- 12CM27型连续采煤机电气系统
- 招标代理成果文件质量保证措施
- 石油英语词汇
- 《夜宿山寺》-完整版课件
- 沪教牛津版八年级上册初二英语期末测试卷(5套)
- 北京市海淀区2020-2021学年度第一学期期末初三物理检测试卷及答案
- 家庭室内装饰装修工程保修单
- 小学语文课堂提问有效性策略研究方案
- 物业上门维修收费标准
评论
0/150
提交评论