2025届河南省三门峡市九年级数学第一学期开学考试试题【含答案】_第1页
2025届河南省三门峡市九年级数学第一学期开学考试试题【含答案】_第2页
2025届河南省三门峡市九年级数学第一学期开学考试试题【含答案】_第3页
2025届河南省三门峡市九年级数学第一学期开学考试试题【含答案】_第4页
2025届河南省三门峡市九年级数学第一学期开学考试试题【含答案】_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届河南省三门峡市九年级数学第一学期开学考试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)矩形具有而平行四边形不一定具有的性质是()A.对边相等 B.对角相等C.对角线相等 D.对角线互相平分2、(4分)如图,在正方形ABCD中,BD=2,∠DCE是正方形ABCD的外角,P是∠DCE的角平分线CF上任意一点,则△PBD的面积等于()A.1 B.1.5 C.2 D.2.53、(4分)一次函数的图象如图所示,当时,x的取值范围是A. B. C. D.4、(4分)如图,已知一次函数的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程的解为;②关于x的方程的解为;③当时,;④当时,.其中正确的是()A.①②③ B.①③④ C.②③④ D.①②④5、(4分)分式可变形为(

)A.

B.

C.

D.6、(4分)已知二次函数(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或 D.或7、(4分)如图,的顶点坐标分别为,,,如果将先向左平移个单位,再向上平移个单位得到,那么点的对应点的坐标是()A. B. C. D.8、(4分)关于的一元二次方程有实数根,则的最大整数值是()A.1 B.0 C.-1 D.不能确定二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是_____.10、(4分)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.11、(4分)如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件_______时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)12、(4分)用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____13、(4分)如图,在中,,,,过点作,垂足为,则的长度是______.三、解答题(本大题共5个小题,共48分)14、(12分)在正方形中,点是边上一个动点,连结,,点,分别为,的中点,连结交直线于点E.(1)如图1,当点与点重合时,的形状是_____________________;(1)当点在点M的左侧时,如图1.①依题意补全图1;②判断的形状,并加以证明.15、(8分)已知一次函数y=kx+b的图象经过点(3,-3),且与直线y=4x-3的交点在x轴上.(1)求这个一次函数的解析式.(2)此函数的图象经过哪几个象限?(3)求此函数的图象与坐标轴围成的三角形的面积.16、(8分)化简求值:,其中.17、(10分)已知关于的一次函数,求满足下列条件的m的取值范围:(1)函数值y随x的增大而增大;(2)函数图象与y轴的负半轴相交;(3)函数的图象过原点.18、(10分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若实数x,y满足+,则xy的值是______.20、(4分)如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为_____.21、(4分)已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是_____.22、(4分)二次三项式是一个完全平方式,则k=_______.23、(4分)一个两位数,它的十位数上的数字比个位上的数字大2.且这个两位数小于40,则这个两位数是________.二、解答题(本大题共3个小题,共30分)24、(8分)为调查某校初二学生一天零花钱的情况,随机调查了初二级部分学生的零钱金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为_____,图①中的值是_____;(2)求本次调查获取的样本数据的平均数;(3)根据样本数据,估计该年级300名学生每天零花钱不多于10元的学生人数.25、(10分)解方程:-=-1.26、(12分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

根据矩形和平行四边形的性质进行解答即可.【详解】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.矩形的对角线相等,而平行四边形的对角线不一定相等.故选C.本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.2、A【解析】由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.解:△PBD的面积等于

×2×1=1.故选A.“点睛”考查了三角形面积公式以及代入数值求解的能力,注意平行线间三角形同底等高的情况.3、A【解析】

解:由图像可知,当时,x的取值范围是.故选A.4、A【解析】

根据一次函数的性质及一次函数与一元一次方程的关系对各结论逐一判断即可得答案.【详解】∵一次函数的图象与x轴,y轴分别交于点(2,0),点(0,3),∴x=2时,y=0,x=0时,y=3,∴关于x的方程的解为;关于x的方程的解为,∴①②正确,由图象可知:x>2时,y<0,故③正确,x<0时,y>3,故④错误,综上所述:正确的结论有①②③,故选A.本题考查一次函数图象上点的坐标特征及一次函数与一元一次方程的关系,利用数形结合的思想是解题关键.5、D【解析】

根据分式的性质,可化简变形.【详解】.故答案为:D考查了分式的基本性质,正确利用分式的基本性质求出是解题关键.6、A【解析】

首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.【详解】依题意知a>0,>0,a+b﹣2=0,故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,于是0<a<2,∴﹣2<2a﹣2<2,又a﹣b为整数,∴2a﹣2=﹣1,0,1,故a=,1,,b=,1,,∴ab=或1,故选A.根据开口和对称轴可以得到b的范围.按照左同右异规则.当对称轴在y轴的左侧,则a,b符号相同,在右侧则a,b符号相反.7、C【解析】

把B点的横坐标减2,纵坐标加1即为点B´的坐标.【详解】解:由题中平移规律可知:点B´的横坐标为-1−2=−3;纵坐标为1+1=2,

∴点B´的坐标是(−3,2).

故选:C.本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.8、C【解析】

利用一元二次方程的定义和判别式的意义得到a≠0且△=(﹣1)2﹣4a≥0,求出a的范围后对各选项进行判断.【详解】解:根据题意得a≠0且△=(﹣1)2﹣4a≥0,解得a≤且a≠0,所以a的最大整数值是﹣1.故选:C.本题考查了一元二次方程的定义和根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.二、填空题(本大题共5个小题,每小题4分,共20分)9、:2或﹣1.【解析】试题解析:当k>0时,y值随x值的增大而增大,∴,解得:,此时=2;当k<0时,y值随x值的增大减小,∴,解得:,此时=-1.综上所述:的值为2或-1.10、【解析】【分析】设出点P坐标,分别表示点AB坐标,由题意△ABC面积与△ABO的面积相等,因此只要求出△ABO的面积即可得答案..【详解】设点P坐标为(a,0)则点A坐标为(a,),B点坐标为(a,﹣)∴S△ABC=S△ABO=S△APO+S△OPB==,故答案为.【点睛】本题考查了反比例函数中比例系数k的几何意义,熟练掌握相关知识是解题的关键.11、AC=BC【解析】由已知可得四边形的四个角都为直角,根据有一组邻边相等的矩形是正方形,可知添加条件为AC=BC时,能说明CE=CF,即此四边形是正方形.12、等腰三角形的底角是钝角或直角【解析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.

故答案是:等腰三角形的两底都是直角或钝角.13、1【解析】

由已知可得Rt△ABC是等腰直角三角形,且,得出CD=AD=BD=AB=1.【详解】∵CA=CB.∠ACB=90°,CD⊥AB,∴AD=DB,∴CD=AB=1,故答案为1.本题考查了等腰直角三角形的性质,直角三角形斜边中线的性质,解题的关键是灵活运用等腰直角三角形的性质求边的关系.三、解答题(本大题共5个小题,共48分)14、(1)等腰直角三角形;(1)①补全图形;②的形状是等腰三角形,证明见解析.【解析】

(1)由在正方形ABCD中,可得∠ABC=90°,AB=BC,又由点P与点B重合,点M,N分别为BC,AP的中点,易得BN=BM,即可判定△EPN的形状是:等腰直角三角形;(1)①首先根据题意画出图形;②首先在MC上截取MF,使MF=PM,连接AF,易得MN是△APF的中位线,证得∠1=∠1,易证得△ABF≌△DCP(SAS),则可得∠1=∠3,继而证得∠1=∠1,则可判定△EPM的形状是:等腰三角形.【详解】(1)∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵点M,N分别为BC,AP的中点,∴当点P与点B重合时,BN=BM,∴当点P与点B重合时,△EPM的形状是:等腰直角三角形;故答案为:等腰直角三角形;(1)补全图形,如图1所示.的形状是等腰三角形.证明:在MC上截取MF,使MF=PM,连结AF,如图1所示.∵N是AP的中点,PM=MF,∴MN是△APF的中位线.∴MN∥AF.∴.=∵M是BC的中点,PM=MF,∴BM+MF=CM+PM.即BF=PC.∵四边形ABCD是正方形,∴,AB=DC.∴△ABF≌△DCP.∴.∴.∴EP=EM.∴△EPM是等腰三角形.此题属于四边形的综合题,考查了正方形的性质、等腰直角三角形的判定、三角形中位线的性质以及全等三角形的判定与性质,注意准确作出辅助线是解此题的关键.15、(1)y=-43x+1(2)第一、二、四象限(3)【解析】(1)先确定直线y=4x-3与x轴的交点坐标,然后利用待定系数法求出一次函数解析式;(2)由k、b的符号确定一次函数的图象所经过的象限;(3)求三角形的面积时要先求出一次函数的图象与两坐标轴的交点坐标.16、【解析】

直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案.【详解】解:当时:原式.此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.17、(1),(2),(3)【解析】【分析】根据一次函数的性质,结合条件列出不等式或等式求出m的取值范围.【详解】解:(1)若函数值y随x的增大而增大,则1-2m>0,所以,;(2)若函数图象与y轴的负半轴相交,则m-1<0,1-2m≠0解得;(3)若函数的图象过原点,则m-1=0,解得m=1【点睛】本题考核知识点:一次函数的性质.解题关键点:熟记一次函数的性质.18、(1)证明见解析;(2)【解析】

(1)在△CAD中,由中位线定理得到MN∥AD,且MN=AD,在Rt△ABC中,因为M是AC的中点,故BM=AC,即可得到结论;(2)由∠BAD=60°且AC平分∠BAD,得到∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,得到∠BMC=60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到,再由MN=BM=1,得到BN的长.【详解】(1)在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,且MN=AD,在Rt△ABC中,∵M是AC的中点,∴BM=AC,又∵AC=AD,∴MN=BM;(2)∵∠BAD=60°且AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴,而由(1)知,MN=BM=AC=×2=1,∴BN=.考点:三角形的中位线定理,勾股定理.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】

根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【详解】因为,所以=0,,解得:=-2,=,所以=(-2)×=-2.故答案为-2.本题考查非负数的性质-算术平方根,非负数的性质-偶次方.20、2【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=(AC+CP),∴OC=CE=(AC+CP),当AC=2,CP=CD=1时,OC=×(2+1)=,当AC=2,CP=CB=5时,OC=×(2+5)=,∴当P从点D出发运动至点B停止时,点O的运动路径长=-=2.故答案为2.点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.21、或【解析】

先根据面积求出三角形在y轴上边的长度,再分正半轴和负半轴两种情况讨论求解.【详解】根据题意,一次函数y=kx+b(k≠0)的图象与y轴交点坐标为(0,b),则×2×|b|=1,解得|b|=1,∴b=±1,①当b=1时,与y轴交点为(0,1),∴2k+1=0,解得k=-,∴函数解析式为y=-x+1;②当b=-1时,与y轴的交点为(0,-1),∴2k-1=0,解得k=,∴函数解析式为y=-x-1,综上,这个一次函数的解析式是或,故答案为:或.本题考查了待定系数法求一次函数解析式,先根据三角形面积求出与y轴的交点,再利用待定系数法求函数解析式,本题需要注意有两种情况.22

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论