![专题07 特殊的平行四边形中的最值模型之费马点模型(原卷版)_第1页](http://file4.renrendoc.com/view8/M02/2E/0C/wKhkGWcTneiAEQ-KAAJdMXQ59lo989.jpg)
![专题07 特殊的平行四边形中的最值模型之费马点模型(原卷版)_第2页](http://file4.renrendoc.com/view8/M02/2E/0C/wKhkGWcTneiAEQ-KAAJdMXQ59lo9892.jpg)
![专题07 特殊的平行四边形中的最值模型之费马点模型(原卷版)_第3页](http://file4.renrendoc.com/view8/M02/2E/0C/wKhkGWcTneiAEQ-KAAJdMXQ59lo9893.jpg)
![专题07 特殊的平行四边形中的最值模型之费马点模型(原卷版)_第4页](http://file4.renrendoc.com/view8/M02/2E/0C/wKhkGWcTneiAEQ-KAAJdMXQ59lo9894.jpg)
![专题07 特殊的平行四边形中的最值模型之费马点模型(原卷版)_第5页](http://file4.renrendoc.com/view8/M02/2E/0C/wKhkGWcTneiAEQ-KAAJdMXQ59lo9895.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题07特殊的平行四边形中的最值模型之费马点模型费马点问题是由全等三角形中的手拉手模型衍生而来,主要考查转化与化归等的数学思想,在各类考试中都以中高档题为主。本专题就最值模型中的费马点问题进行梳理及对应试题分析,方便掌握。【模型背景】皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.费马点:三角形内的点到三个顶点距离之和最小的点。【模型解读】结论:如图,点M为△ABC内任意一点,连接AM、BM、CM,当M与三个顶点连线的夹角为120°时,MA+MB+MC的值最小。注意:上述结论成立的条件是△ABC的最大的角要小于120º,若最大的角大于或等于120º,此时费马点就是最大角的顶点A。(这种情况一般不考,通常三角形的最大顶角都小于120°)【模型证明】以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.∵△ABE为等边三角形,∴AB=BE,∠ABE=60°.而∠MBN=60°,∴∠ABM=∠EBN.在△AMB与△ENB中,∵,∴△AMB≌△ENB(SAS).连接MN.由△AMB≌△ENB知,AM=EN.∵∠MBN=60°,BM=BN,∴△BMN为等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.∴当E、N、M、C四点共线时,AM+BM+CM的值最小.此时,∠BMC=180°﹣∠NMB=120°;∠AMB=∠ENB=180°﹣∠BNM=120°;∠AMC=360°﹣∠BMC﹣∠AMB=120°.费马点的作法:如图3,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点。【最值原理】两点之间,线段最短。例1.(2023·成都实外九年级阶段练习)已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果是锐角(或直角)三角形,则其费马点P是三角形内一点,且满足.(例如:等边三角形的费马点是其三条高的交点).如图,在边长为6的正方形ABCD中,点M,N分别为AB、BC上的动点,且始终保持BM=CN.连接MN,以MN为斜边在矩形内作等腰Rt△MNQ,若在正方形内还存在一点P,则点P到点A、点D、点Q的距离之和的最小值为.例2.(2023·陕西榆林·九年级校考期中)如图,点P是边长为4的菱形的对角线上一动点,若,则的最小值为.
例3.(2023春·浙江·八年级专题练习)如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为______.例4.(2024·广东·九年级培优训练)如图,在正方形中,点为对角线上一点,为等边三角形.(1)当点在何处时,的值最小,说明理由;(2)当正方形的边长为8时,求的最小值是多少?例5.(2023·广东广州·校考二模)平行四边形中,点E在边上,连,点F在线段上,连,连.(1)如图1,已知,点E为中点,.若,求的长度;(2)如图2,已知,将射线沿翻折交于H,过点C作交于点G.若,求证:;(3)如图3,已知,若,直接写出的最小值.例6.(2023·重庆·九年级专题练习)【问题提出】(1)如图1,四边形是正方形,是等边三角形,M为对角线(不含B点)上任意一点,将绕点B逆时针旋转得到,连接、,.若连接,则的形状是________.(2)如图2,在中,,,求的最小值.【问题解决】(3)如图3,某高新技术开发区有一个平行四边形的公园,千米,,公园内有一个儿童游乐场E,分别从A、B、C向游乐场E修三条,求三条路的长度和(即)最小时,平行四边形公园的面积.例7.(2024上·河北沧州·九年级统考期末)如图,设是边长为1的正方形内的两个点,则的最小值为.例8.(2023上·广东广州·九年级校考期中)如图①,在平面直角坐标系中,直线分别与轴,轴交于,两点,点为中点,四边形和四边形都是正方形.(1)求的长;(2)如图②,连接,,过点作于点,延长交于点,求证:;(3)如图③,,点在边上,且,为的中点,点为正方形内部一点,连接,,,请直接写出的最小值.课后专项训练1.(2023春·浙江·八年级专题练习)如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长()A. B. C. D.2.(2022·广东广州·一模)如图,正方形ABCD内一点E,E到A、B、C三点的距离之和的最小值为,正方形的边长为_______.3.(2024上·陕西汉中·九年级统考期末)如图,正方形的边长为2.为与点不重合的动点,以为一边作正方形.设,点、与点的距离分别为、,则的最小值为.4.(2023·四川·校联考模拟预测)如图,在中,P为平面内的一点,连接,若,则的最小值是(
)A. B.36 C. D.5.(2023春·浙江·八年级专题练习)如图,点P是矩形对角线上的一个动点,已知,则的最小值是__.6.(2023·广东梅州·九年级校考阶段练习)定义:在一个等腰三角形底边的高线上所有点中,到三角形三个顶点距离之和最小的点叫做这个等腰三角形的“近点”,“近点”到三个顶点距离之和叫做这个等腰三角形的“最近值”.【基础巩固】(1)如图1,在等腰Rt△ABC中,∠BAC=90°,AD为BC边上的高,已知AD上一点E满足∠DEC=60°,AC=,求AE+BE+CE=;【尝试应用】(2)如图2,等边三角形ABC边长为,E为高线AD上的点,将三角形AEC绕点A逆时针旋转60°得到三角形AFG,连接EF,请你在此基础上继续探究求出等边三角形ABC的“最近值”;【拓展提高】(3)如图3,在菱形ABCD中,过AB的中点E作AB垂线交CD的延长线于点F,连接AC、DB,已知∠BDA=75°,AB=6,求三角形AFB“最近值”的平方.7.(2023·广东·九年级专题练习)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长.8.(2023·福建九年级月考)如图,四边形是正方形,是等边三角形,为对角线(不含点)上任意一点,将绕点逆时针旋转得到,连接、、.设点的坐标为.(1)若建立平面直角坐标系,满足原点在线段上,点,.且(),则点的坐标为,点的坐标为;请直接写出点纵坐标的取值范围是;(2)若正方形的边长为2,求的长,以及的最小值.(提示:连接:,)9.(2023·陕西西安·八年级校考阶段练习)问题探究将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换.旋转变换是几何变换的一种基本模型.经过旋转,往往能使图形的几何性质明白显现.题设和结论中的元素由分散变为集中,相互之间的关系清楚明了,从而将求解问题灵活转化.问题提出:如图1,是边长为1的等边三角形,为内部一点,连接,求的最小值.方法分析:通过转化,把由三角形内一点发出的三条线段(星型线)转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).问题解决:如图2,将绕点逆时针旋转至,连接、,记与交于点,易知,.由,,可知为正三角形,有.故.因此,当共线时,有最小值是.学以致用:(1)如图3,在中,,,为内部一点,连接、,则的最小值是__________.(2)如图4,在中,,,为内部一点,连接、,求的最小值.(3)如图5,是边长为2的正方形内一点,为边上一点,连接、,求的最小值.10.(2023春·广东·八年级专题练习)如图1,在平行四边形ABCD中,E为边CD上一动点,连接BE交对角线AC于点F,点M为线段BF上一点,连接AM.(1)如图1,若对角线AC⊥AB,点M是BF的中点,,,求BC的长;(2)如图2,若,,AC的垂直平分线交BE的延长线于点G,连接AG,CG,AM平分∠BAC交BE于点M,求证:;(3)如图3,当点E在运动过程中满足BCE为等边三角形时,若;在BCE内部是否存在一点P使有最小值,若存在,直接写出的最小值,若不存在,请说明理由.11.(2023上·广东汕头·九年级统考期末)如图,菱形中,,.点E为对角线(不含A,C点)上任意一点,连接,将绕点A逆时针旋转得到,连接;(1)证明:;(2)设,请直接写出y的最小值.12.(2023·河南周口·三模)【问题背景】数学活动小组在学习《确定圆的条件》时,曾遇到这样一个问题:如图1,草原上有三个放牧点,要修建一个牧民定居点,使得定居点到三个放牧点的距离相等,那么如何确定定居点的位置?(1)请用无刻度的直尺和圆规在图2中画出定居点O的位置,使点O到点A,B,C的距离相等.(不写作法,保留作图痕迹)
【问题探索】聪明的小智在解决这个问题之后,继续提出新的问题,如图3,在平面内是否存在一点P,使点P到△ABC三个顶点的距离之和最小?通过不断探究,小智发现可以借助旋转的思想解决这个问题,如图4,把绕点A逆时针旋转,得到,连接,可知为等边三角形,因此,由两点之间,线段最短,可知的最小值即为点B,P,,C共线时线段的长.
(2)【类比探究】如图5,在中,,点P为内一点,连接,求的最小值.(3)【实际应用】如图6,现要在矩形公园
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度数据中心机房智能监控系统采购合同
- 2025年度企业年鉴画册设计合同规范模板
- 2025年度太阳能热水系统机电安装与售后服务合同
- 2025年度企业品牌形象广告设计合同范本
- 2025年度企业内部图书更新采购合同
- 2025年度国际鸡肉贸易合同范本
- 2025年度光伏电站项目环境保护合同
- 2025年度文化旅游项目投资与合作开发合同
- 2025年度口罩应急物资储备与供应合同
- 2025年度农产品供应链终止合同通知
- 电网调度基本知识课件
- 环境与职业健康安全管理手册
- 甲状腺乳腺外科ERAS实施流程(模板)
- 2025届高考语文复习:小说人物+课件
- 村委会2025年工作总结及2025年工作计划
- GB/T 19411-2024除湿机
- 欠薪证明协议书(2篇)
- 注射泵操作使用课件
- 2024年全国新高考1卷(新课标Ⅰ)数学试卷(含答案详解)
- 人教版高中生物学新旧教材知识差异盘点
- 字体设计(上海出版印刷高等专科学校) 知到智慧树网课答案
评论
0/150
提交评论