版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第13讲勾股定理目标导航目标导航1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.4.理解勾股定理的逆定理,并能与勾股定理相区别;5.能运用勾股定理的逆定理判断一个三角形是否是直角三角形;6.理解勾股数的含义;7.通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力.知识精讲知识精讲知识点01勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.【微点拨】(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,,.【即学即练1】1、在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为、、.(1)若=5,=12,求;(2)若=26,=24,求.【点拨】利用勾股定理来求未知边长.【解析】解:(1)因为△ABC中,∠C=90°,,=5,=12,所以.所以=13.(2)因为△ABC中,∠C=90°,,=26,=24,所以.所以=10.【总结】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式.知识点02勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.【微点拨】勾股定理的作用已知直角三角形的任意两条边长,求第三边;用于解决带有平方关系的证明问题;3.与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.【即学即练2】阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,然后按图1的方法将它们摆成正方形.由图1可以得到(a+b)2=4×,整理,得a2+2ab+b2=2ab+c2.所以a2+b2=c2.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述证明勾股定理的方法,完成下面的填空:由图2可以得到,整理,得,所以.【解析】证明:∵S大正方形=c2,S大正方形=4S△+S小正方形=4×ab+(b﹣a)2,∴c2=4×ab+(b﹣a)2,整理,得2ab+b2﹣2ab+a2=c2,∴c2=a2+b2.故答案是:;2ab+b2﹣2ab+a2=c2;a2+b2=c2.【总结】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.知识点03勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.【微点拨】(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.【即学即练3】判断由线段组成的三角形是不是直角三角形.(1)=7,=24,=25;(2)=,=1,=;(3),,();【点拨】判断三条线段能否组成直角三角形,关键是运用勾股定理的逆定理:看较短的两条线段的平方和是否等于最长线段的平方.若是,则为直角三角形,反之,则不是直角三角形.【解析】解:(1)∵,,∴.∴由线段组成的三角形是直角三角形.(2)∵,,,∴.∴由线段组成的三角形不是直角三角形.(3)∵,∴,.∵,,∴.∴由线段组成的三角形是直角三角形.【总结】解此类题的关键是准确地判断哪一条边最大,然后再利用勾股定理的逆定理进行判断,即首先确定最大边,然后验证与是否具有相等关系,再根据结果判断是否为直角三角形.知识点04如何判定一个三角形是否是直角三角形首先确定最大边(如).验证与是否具有相等关系.若,则△ABC是∠C=90°的直角三角形;若,则△ABC不是直角三角形.【微点拨】当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.【即学即练4】类型一几何判断三角形形状如图,已知四边形ABCD中,∠B=∠90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【点拨】由AB=3,BC=4,∠B=90°,应想到连接AC,则在Rt△ABC中即可求出△ABC的面积,也可求出线段AC的长.所以在△ACD中,已知AC,AD,CD三边长,判断这个三角形的形状,进而求得这个三角形的面积.【解析】解:连接AC,在△ABC中,因为∠B=90°,AB=3,BC=4,所以,所以AC=5,在△ACD中,AD=13,DC=12,AC=5,所以,即.所以△ACD是直角三角形,且∠ACD=90°.所以.【总结】有关四边形的问题通常转化为三角形的问题来解,本题是勾股定理及逆定理的综合考察.类型二代数判断三角形形状已知:为的三边且满足,试判断的形状.【解析】解:∵∴∴,∴△ABC是直角三角形.【总结】此类问题中要判断的三角形一般都是特殊三角形,一定要善于把题目中已知的条件等式进行变形,从而得到三角形的三边关系.对条件等式进行变形常用的方法有配方法,因式分解法等.知识点05勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.【微点拨】(1)(是自然数)是直角三角形的三条边长;(2)(n≥1,是自然数)是直角三角形的三条边长;(3)(是自然数)是直角三角形的三条边长;能力拓展能力拓展考法01勾股定理类型01直角三角中利用角求边1.在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为、、.(1)已知=6,=10,求;(2)已知,=32,求、.【答案】解:(1)∵∠C=90°,=6,=10,∴,∴=8.(2)设,,∵∠C=90°,=32,∴.即.解得=8.∴,.类型02利用勾股定理求线段长度2、如图,长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6【答案】D;【解析】解:设AB=,则AF=,∵△ABE折叠后的图形为△AFE,∴△ABE≌△AFE.BE=EF,EC=BC-BE=8-3=5,在Rt△EFC中,由勾股定理解得FC=4,在Rt△ABC中,,解得.【总结】折叠问题包括“全等形”、“勾股定理”两大问题,最后通过勾股定理求解.类型03利用勾股定理求面积3、如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.6B.5C.11D.16【点拨】本题主要考察了全等三角形与勾股定理的综合应用,由b是正方形,可求△ABC≌△CDE.由勾股定理可求b的面积=a的面积+c的面积.【答案】D【解析】解:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,
∴∠ACB=∠DEC,
在△ABC和△CDE中,
∵∴△ABC≌△CDE
∴BC=DE
∵∴∴b的面积为5+11=16,故选D.【总结】此题巧妙的运用了勾股定理解决了面积问题,考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.类型04、利用勾股定理解决实际问题4、有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.【点拨】根据题中所给的条件可知,竹竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高.【解析】解:设门高为x尺,则竹竿长为(x+1)尺,根据勾股定理可得:x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,竹竿高=7.5+1=8.5(尺)答:门高7.5尺,竹竿高8.5尺.【总结】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键.考法02判断三角形形状类型01、勾股定理的逆定理1、如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为多少cm2.【点拨】本题先设适当的参数求出三角形的三边,由勾股定理的逆定理得出三角形为直角三角形.再求出3秒后的BP,BQ的长,利用三角形的面积公式计算求解.【解析】解:设AB为3xcm,BC为4xcm,AC为5xcm,∵周长为36cm,AB+BC+AC=36cm,∴3x+4x+5x=36,得x=3,∴AB=9cm,BC=12cm,AC=15cm,∵AB2+BC2=AC2,∴△ABC是直角三角形,过3秒时,BP=9﹣3×1=6(cm),BQ=2×3=6(cm),∴S△PBQ=BP•BQ=×(9﹣3)×6=18(cm2).故过3秒时,△BPQ的面积为18cm2.【总结】本题是道综合性较强的题,需要学生把勾股定理的逆定理、三角形的面积公式结合求解.由勾股定理的逆定理得出三角形为直角三角形,是解题的关键.隐含了整体的数学思想和正确运算的能力.2、如图,点D是△ABC内一点,把△ABD绕点B顺时针方向旋转60°得到△CBE,若AD=4,BD=3,CD=5.(1)判断△DEC的形状,并说明理由;(2)求∠ADB的度数.【点拨】把△ABD绕点B顺时针方向旋转60°,注意旋转只是三角形的位置变了,三角形的边长和角度并没有变,并且旋转的角度60°,因此出现等边△BDE,从而才能更有利的判断三角形的形状和求∠ADB的度数.【解析】解:(1)根据图形的旋转不变性,AD=EC,BD=BE,又∵∠DBE=∠ABC=60°,∴△ABC和△DBE均为等边三角形,于是DE=BD=3,EC=AD=4,又∵CD=5,∴DE2+EC2=32+42=52=CD2;故△DEC为直角三角形.(2)∵△DEC为直角三角形,∴∠DEC=90°,又∵△BDE为等边三角形,∴∠BED=60°,∴∠BEC=90°+60°=150°,即∠ADB=150°.【总结】此题考查了旋转后图形的不变性、全等三角形的性质、等边三角形的性质、勾股定理的逆定理等知识,综合性较强,是一道好题.解答(2)时要注意运用(1)的结论.类型02勾股定理逆定理的应用3、已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状.【解析】解:令=k.∴a+4=3k,b+3=2k,c+8=4k,∴a=3k﹣4,b=2k﹣3,c=4k﹣8.又∵a+b+c=12,∴(3k﹣4)+(2k﹣3)+(4k﹣8)=12,∴k=3.∴a=5,b=3,c=4.∴△ABC是直角三角形.【总结】此题借用设比例系数k的方法,进一步求得三角形的三边长,根据勾股定理的逆定理判定三角形的形状.分层提分分层提分题组A基础过关练1.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.10【答案】C;【解析】勾股定理.2.若直角三角形的三边长分别为2,4,,则的值可能有()A.1个B.2个C.3个 D.4个【答案】B;【解析】可能是直角边,也可能是斜边.3.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是()A.12米B.10米C.8米D.6米【答案】A;【解析】设旗杆的高度为米,则,解得米.4.Rt△ABC中,斜边BC=2,则的值为()A.8 B.4 C.6 D.无法计算【答案】A;【解析】.5.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于()A.4B.6 C.8 D.5【答案】B;【解析】AD=8,,∴BD=6.6.如图,在△ABC中,AB=AC=5,P是BC边上除B、C点外的任意一点,则代数式AP2+PB•PC等于()A.25B.15C.20D.30【答案】A.【解析】解:过点A作AD⊥BC于D,∵AB=AC=5,∠ADP=∠ADB=90°,∴BD=CD,根据勾股定理得:PA2=PD2+AD2,AD2+BD2=AB2,∴AP2+PB•PC=AP2+(BD+PD)(CD﹣PD)=AP2+(BD+PD)(BD﹣PD)=AP2+BD2﹣PD2=AP2﹣PD2+BD2=AD2+BD2=AB2=25.故选A.题组B能力提升练7.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为()A.10B.11C.12D.13【答案】C【解析】∵BE⊥AC,∴△AEB是直角三角形,∵D为AB中点,DE=10,∴AB=20,∵AE=16,,所以BE=12.8.如图,长方形AOBC中,AO=8,BD=3,若将矩形沿直线AD折叠,则顶点C恰好落在边OB上E处,那么图中阴影部分的面积为()A.30B.32C.34D.16【答案】A【解析】由题意CD=DE=5,BE=4,设OE=,AE=AC=,所以,,阴影部分面积为.9.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线,,上,且,之间的距离为2,,之间的距离为3,则的值是()A.68B.20C.32D.47【答案】A【解析】如图,分别作CD⊥交于点E,作AF⊥,则可证△AFB≌△BDC,则AF=3=BD,BF=CD=2+3=5,∴DF=5+3=8=AE,在直角△AEC中,勾股定理得.10.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或33【答案】C【解析】高在△ABC内部,第三边长为14;高在△ABC外部,第三边长为4,故选C.11.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值是_________.【答案】25;【解析】根据题意,结合勾股定理a2+b2=13,四个三角形的面积=4×ab=13﹣1,∴2ab=12,联立解得:(a+b)2=13+12=25.12.已知长方形ABCD,AB=3,AD=4,过对角线BD的中点O做BD的垂直平分线EF,分别交AD、BC于点E、F,则AE的长为_______________.【答案】;【解析】连接BE,设AE=,BE=DE=,则,.题组C培优拔尖练13.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为()A. B. C. D. 【答案】C【解析】解:根据题意:第一个正方形的边长为2;第二个正方形的边长为:;第三个正方形的边长为:,…第n个正方形的边长是,所以S2015的值是()2012,故选C.14.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学校外实践活动实施方案
- 社区文化中心装修工程方案
- 科研实验室污水处理物料管理标准
- 科研项目进度计划管理制度
- 法律专业研究生实践基地合作协议书
- 房屋交换协议书的纠纷解决方案
- 处方药分发监管制度
- 旅行社财务审计管理制度
- 互联网企业资产管理制度实践
- 测试与质量控制管理制度
- 船艇安全用电的基本常识课件
- 海南省的历史与文化遗产
- 脊柱退行性疾病的机器人辅助手术
- 半导体智能制造与自动化技术
- 反比例函数的图象和性质说课稿(一等奖)
- 学习常用药物的使用方法与副作用
- 《骨科早期康复》课件
- 遮放贡米的行业分析
- 【一例小儿支气管肺炎的临床护理个案分析2200字】
- 中国特色社会主义理论与实践复习资料-研究生
- 除湿机参数计算表
评论
0/150
提交评论