版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(苏科版)七年级上册数学《第二章有理数》
专题有理数的乘除法的计算题(50题)
题型归纳
1
(1)0X(-1-);
4
(2)(-0.25)X(一百);
1
(4)(一4一)X0.2.
6
【分析】根据有理数的乘法运算法则进行计算即可得解.
1
【解答】解:(1)0X(-1-)=0;
4
(2)(-0.25)X(一己)
=5;
1
(4)(-4-)X0.2
6
251
石、5
5
6,
【点评】本题考查了有理数的乘法运算,熟记运算法则是解题的关键.
2.计算:
(1)(-3)X(-4);
(2)(-3.2)X1.5;
43
(3)—x(——);
3
(4)1-x(-8).
【分析】(1)两数相乘,同号得正,再把绝对值相乘即可求解;
(2)两数相乘,异号得负,再把绝对值相乘即可求解;
(3)两数相乘,异号得负,再把绝对值相乘即可求解;
(4)两数相乘,异号得负,再把绝对值相乘即可求解.
【解答】解:(1)原式=3X4=12;
(2)原式=-(3.2X1.5)=-4.8;
(3)原式=-(4-X3-)=一索7
9ZJ
7
(4)原式=-(-X8)=-14.
4
【点评】本题主要考查有理数的乘法,掌握有理数的乘法法则是解题的关键.
3.计算:
(1)(-3)X(-4);
41
(2)(+耳)X(-1—);
(3)(-2022)X0;
(4)(-0.125)X8;
(5)25X(-1);
1
(6)(一炉X(-3).
【分析】(1)根据有理数乘法法则:两数相乘,同号得正,并把绝对值相乘即可求解;
(2)根据有理数乘法法则:两数相乘,异号得负,并把绝对值相乘即可求解;
(3)根据有理数乘法法则:任何数与0相乘,都得。即可求解;
(4)根据有理数乘法法则:两数相乘,异号得负,并把绝对值相乘即可求解;
(5)根据有理数乘法法则:两数相乘,异号得负,并把绝对值相乘即可求解;
(6)根据有理数乘法法则:两数相乘,同号得正,并把绝对值相乘即可求解.
【解答】解:(1)原式=3X4=12;
45
(2)原式=-(―x—)=-1;
54
(3)原式=0;
(4)原式=-(0.125X8)=-1;
(5)原式二"(25X1)=-25;
1
(6)原式=可入3=1.
【点评】本题主要考查了有理数的乘法,掌握有理数的乘法法则是解题的关键.
4.计算:
(1)0X(—g);
1
(2)3X(—I);
(3)(-7)X(-1);
(4)(-1)X(—;).
【分析】根据有理理数的乘法法则进行计算即可.
【解答】解:(1)原式=0;
1
(2)原式=-3Xg=-1;
(3)原式=7X1=7;
(4)原式
【点评】本题考查了有理数的乘法.解题的关键是掌握有理数的乘法法则,特别要注意积的符号.
【分析】根据有理数的乘法法则有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,
任何数同零相乘,都得0,进行计算即可得出答案.
【解答】解:原式=[(_;)x(T)[x[x;)q=2
【点评】本题主要考查了有理数的乘法,熟练掌握有理数的乘法法则进行计算是解决本题的关键.
6.计算:
1
(1)(-2)X(―之)X(-3);
⑵(-0.1)X1000X(-0.01).
【分析】根据有理数的乘法法则进行计算便可.
1
【解答】解:(1)(-2)X(一?)X(-3)
1
=-2x)x3
-3;
(2)(-0.1)X1000X(-0.01)
=+0.1X1000X0.01
=1.
【点评】本题主要考查了有理数的乘法,关键是熟记有理数乘法法则.
7.(2022秋口宁远县校级月考)求值:
、
(1)1-X/(-16)X/(一4耳)X(-1—);
(2)(-X(--^)X(一2g)X(―^).
【分析】根据有理数乘法法则进行计算便可.
【解答】解:(1)一1X(-16)X(一A?)X(-11-)
4□4
145
=--J-X16X-X—
454
=-4;
(2)(—jy)X(—格)X(-2-)X(―可)
-5x8113
6
【点评】本题考查了有理数乘法,关键是熟记和应用有理数法则:两数相乘,同号得正,异号得负,并
把绝对值相乘,任何数与零相乘积为零;几个不为零的数相乘,积的符号由负因数个数决定,负因数的
个数为奇数时,积为负,负因数的个数为偶数时,积为正.
8.计算:
1q1
(1)(-8)x—x(一手);
0P
(2)(―7)X(―g)X(-6);
2/14
(3)-x(一))X(―弓)X(-5).
【分析】应用有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,进行计算即可得出
答案.
1
【解答】解:(1)原式=(-30)X(―4)
10;
OO
(2)(-1)X(-分X(-6)
原式=4义(-6)
48
~21;
2/14
(3)-X(一2)X(一百)X(-5)
原式=(一3)
1
=(-3)X4
__4
--3-
【点评】本题主要考查了有理数的乘法,熟练掌握有理数的乘法法则进行求解是解决本题的关键.
9.计算下列各题:
(1)(-30)x(-l)x(-0.2)x6(-1)xZx(-l|)x
(2)
Jo3
141(4)-|x(-1.2)x(-l)x[-(-l1)]
(3),x(-16)x(-)x-1_
454
【分析】根据有理数的乘法计算即可得出答案.
[解答]解:(1)原式=_(30x:x0.2x6)=—6
6
,,3758、7
145145
(3)原式二彳义(-16)x(-5)X4=+(工x16x5X4)=4
,5/,c、,1、,5.56112.2
(4)原式=一«><(—1.2»(一.)x1亍=_(4X「XgX尸)
7
【点评】本题考查多个有理数的乘法,正确掌握运算法则是解题的关键.
10.计算:
1
(1)3X(-1)X(―1).
(2)-1.2X5X(-3)X(-4).
(3)(—xF"x(―2)义(-6).
5i
(4)-x(-1.2)X(-A).
【分析】根据有理数的乘法法则进行计算便可.
1
【解答】解:(1)3X(-1)X(一耳)
=+3X1x§
=1;
(2)-1.2X5X(-3)X(-4)
=-1.2X5X3X4
=-72;
(3)(一2)x^x(-|)X(-6)
543
=-T2XT5X2X6
=-1;
5i
(4)-x(-1.2)XT)
4y
—+5x12x1
一+4X10X9
_1
一S
【点评】本题主要考查了有理数的乘法,熟记运算法则与是解题的关键.
1
11.计算:(-8)X9X(-1.25)X(一5)
【分析】根据有理数的乘法法则和乘法的交换律进行计算即可.
【解答】解:(-8)X9X(-1.25)X(-1)
1
=[(-8)X(-1,25)]X9[X(一。)]
=10X(-1)
=-10.
【点评】此题考查了有理数的乘法,掌握有理数的乘法法则是解题的关键,是一道基础题.
12.用简便方法计算:(-8)X(-1)X(-1.25)x1.
【分析】根据有理数的乘法法则,运用乘法交换律和结合律进行简便计算.
4,
【解答】解:原式=[(-8)X(-1.25)]X[(―亨)x^]
=10x(―1-)
50
【点评】本题主要考查有理数的乘法,掌握乘法法则,运用乘法交换律和结合律进行简便计算是解题的
关键.
13.(2022秋口惠城区月考)计算:45X(―25)Xgx(—益)+/x(―1;).
【分析】先确定符号.把除法化为化为乘法,带分数化为假分数,最后计算出结果.
【解答】解:45X(-25)xJx(一II)(-1-)
=-(45X25XgXT^x4x7)
78ii
=-(-x-x45xAix25X4)
87
=-3300.
【点评】本题考查有理数的混合运算,掌握乘法的交换律和结合律的熟练应用,把除法化为乘法是解题
关键.
71
14.计算:(-36)X99—
72
【分析】直接利用有理数的乘法运算法则进而得出答案.
【解答】解:原式=(-36)X(100—4)
1
=(-36)X100-(-36)x无
1
=-3600+2
1
=-3599-.
【点评】此题主要考查了有理数的乘法运算,正确掌握相关运算法则是解题关键.
15.计算:—(—59黑)x60;
【分析】根据有理数的乘法法则以及乘法运算律则计算即可.
【解答】解:原式=59薪C.Qx60
=(60—给x60
1
=60x60—x60
7o7UT
=3600-1
=3599.
【点评】本题主要考查了有理数的乘法,熟练掌握乘法运算律是解答本题的关键.
16.用简便方法计算
23
(1)-39—x(-12)
24
211
(2)(--------)X(-60)
31215
【分析】根据乘法分配律,可得答案.
【解答】解:⑴原式=(-40+吉)X(-12)=-40X(-12)-ixl2=480-l=479p
(2)原式=5x(-60)+£x60+*x60=-40+5+4=-31.
【点评】本题考查了有理数的乘法,利用拆项法得出乘法分配律是解题关键.
17.用简便方法计算:
(1)-13X|-0.34X2+1X(-13)-1x0.34
(2)寺+"-X(-60)
【分析】(1)首先应用乘法交换律,把-13x:—0.34X楙+gx(-13)—;x0.34化成
-13xf-ixl3-|xO.34-O.34x£,然后应用乘法分配律,求出算式的值是多少即可.
(2)应用乘法分配律,求出算式(一;—1+1—A)*(-60)的值是多少即可.
【解答】解:(1)-13x|-0.34x|+|x(-13)-1x0.34
13x2|-i1xl3-^5xO.34-0.34X;2
2152
=-13X(-+-)-(-+-)X0.34
3377
=-13X1-1X0.34
=-13-0.34
=-13.34
1117
⑵(一道)X(-60)
1117
=(-W)X(-60)—4X(-60)+qX(-60)一记x(-60)
=20+15-12+28
=51
【点评】(1)此题主要考查了有理数的乘法,要熟练掌握,解答此题的关键是要明确有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘.
(2)此题还考查了乘法运算定律的应用,要熟练掌握.
18.用乘法运算律,将下列各式进行简便计算:
1O4
(1)<-1-)X(-7)x|;(2)(-5)x8x(-l_)x(-1.25)
(3)(-48)X(―/+H);(4)0.7x1--6.6x1-1.1x1+0.7x2..
23QQQ
(5)-39—x(-12)(6)4.61x^-5.39X(-£)+3X(").
24777
【分析】(1)利用乘法的交换律与结合律计算;
(2)利用乘法的交换律与结合律计算;
(3)利用乘法的分配律计算即可;
(4)逆用乘法的分配律,以简化运算即可.
(5)利用乘法的分配律计算即可;
(6)逆用乘法的分配律,以简化运算即可.
【解答】解:(1)(-11-)X(-7)x42
a2
=(-f)X^X(-7)
二7;
4
(2)(-5)x8x(-l_)x(-1.25)
9
=[(-5)x(-_)]x[8x(-1.25)]
=9x(-10)
=90
(3)(-48)X(q3+5|7一8)
=-48x(一$—48x|—48x(一二)
=36-40+28
=24;
(4)0.7x-6.6x7-1.1x+0.7x1-
=0.7x■+否+;x(-6.6-1.1)
=0.7-3.3
=-2.6.
一i
(5)原式=(-40+24)X(-12)
=-40X(-12)一4X12
11
=480-7=479-;
乙2
(6)原式=4.61x7+5.39x7—3x7
=;x(4.61+5.39-3)
=1x7
=3.
【点评】本题主要考查有理数的运算,关键是使用运算律可使运算简便.
题型四两个有理数的除法
19.计算:
(1)(-6.5)4-(-0.5);
(2)44-(-2);
(3)0+(-1000);
(4)(-2.5)
【分析】(1)先判断出符号,再绝对值相除即可;
(2)先判断出符号,再绝对值相除即可;
(3)零除以任何一个不为零的数,商为零,
(4)先判断出符号,再绝对值相除,既有分数,又有小数,一般把小数化为分数直接约分即可;
【解答】解:(1)(-6.5)+(-0,5)=6.54-0.5=13;
(2)44-(-2)=-44-2=-2
(3)0+(-1000)=0;
(4)(-2.5)+g=-2.5+;=-:x'=-4;
【点评】此题是有理数的除法,主要考查了有理数除法的法则,进行计算时,先判断符号,再绝对值相
除.
20.计算:
3
(4)-尹L5
【分析】(1)0除以任何数都为0;
(2)根据九九乘法表计算;
(3)根据有理数的除法运算进行计算;
(4)换算成小数进行计算;
【解答】解:(1)04-(-2022)
=0;
(2)(-27)4-9
=-3;
44
(3)-3
=-1;
(4)-#3L5
=-1;
【点评】本题考查了有理数的除法运算,解题关键在于熟知除以一个数等于乘以它的倒数.
21.计算:
(1)(-68)+(-17);
(2)(-0.75)4-0.25;
7
(3)(-g)4-(-1.75);
1
(4)3--(-7)
【分析】(1)直接利用有理数的除法运算法则计算得出答案;
(2)直接利用有理数的除法运算法则计算得出答案;
(3)直接利用有理数的除法运算法则计算得出答案;
(4)直接利用有理数的除法运算法则计算得出答案.
【解答】解:(1)(-68)4-(-17)=4;
(2)(-0.75)4-0.25=-0.75X4=-3;
7741
x=;
(3)(-g)4-(-1.75)=g72
1
(4)3--(-7)
=2XT)
=+•
【点评】此题主要考查了有理数的乘除运算,正确掌握相关运算法则是解题关键.
22.计算
(1)(+48)+(+6);
(2)(—32令十(51卜;
(3)44-(-2);
(4)04-(-1000).
【分析】原式各项利用除法法则计算即可得到结果.
【解答】解:(1)原式=8;
1177
(2)原式=—fy=-3^;
(3)原式=-2;
(4)原式=0.
【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.
(1)(一;)4-(一告)4-(-1);
513
(2)(-0.65)+(―亍)+(―2;)4-(+--).
7310
【分析】根据有理数的乘除法则和混合运算顺序进行计算便可.
【解答】解:(1)(―y)X(-竽)+(-金
--4143
一7XTX2
=-4;
513
(2)(-0.65)4-(―=)4-(-2-)4-(H—).
7310
--65x7x3x10
-T00X5X7X^-
=-1.3.
【点评】本题主要考查了有理数乘除法,关键是熟记有理数乘除法法则和混合运算顺序.
24.计算:
1
(1)(-24)4-(-2)4-(-1-);
9X
1--9
(2)-27+2彳424
【分析】(1)先确定符号再把绝对值相除;
(2)先确定符号再把绝对值相除或相乘,最后把除法化为乘法计算.
【解答】解:
1
(1)(-24)4-(-2)+(-1-)
1
=124-(-1-)
=-10;
1Q
⑵-27-24*+\24)
=27+Tx14-24
441
XX
=27x--
9924
2
-9-
【点评】本题主要考查了有理数除法、乘法,掌握有理数的除法、乘法法则,符号的确定是解题关键.
25.计算:
(1)(―g3)4-(-2-)4-(-11-)4-3;
574
2/2
(2)(-8)+1+(--)+(-9).
【分析】各式利用除法法则把除法转化成乘法运算,通过约分即可得到结果.
R21274114
【解答】解:(1)(一二)4-(--)4-(-1-)4-3=-pX7X-X7=
5745Z5DZ5
22DQ-1
(2)(-8)+$+(--T-(-9)=-8x之x之xg=-2.
【点评】此题考查了有理数的乘除法,熟练掌握乘除法则是解本题的关键.
26.计算:
33
⑴-3+(一天+(-T);
1
(2)(-12)4-(-4)4-(-1-);
(3)(-1)4-(-2)4-0.25;
13
(4)(-2-)4-(-5)4-(---).
210
【分析】(1)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;
(2)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;
(3)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案;
(4)直接利用有理数的除法运算法则除法变乘法,再利用有理数的乘法运算法则计算得出答案.
【解答】解:(1)原式=-3X(-J4)X(-14)
16
--3-;
1q
(2)原式=(-12)X(一力X(一卷)
5
=一天
77
(3)原式=(—2)X(—g)X4
_7
=于
(4)原式=(—^)X(—^)X(—竽)
5
=-3-
【点评】此题主要考查了有理数的除法运算,正确掌握相关运算法则是解题关键.
27.计算:
28
(1)(―可)+(―石)+(-0.25);
(2)(-81)+产>(-16);
12
(3)(-6.5)4-(—J)+(一耳)+(-5).
【分析】应用有理数除法法则:有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:4
+6=a京(6W0),有理数乘法法则:(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对
值相乘.(2)任何数同零相乘,都得0,(3)多个有理数相乘的法则:①几个不等于。的数相乘,积
的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数
相乘,有一个因数为0,积就为①进行计算即可得出答案.
【解答】解:⑴原式=(一£2)X(-qQX(-4)
25、
二一(-X-X4)
38
5
=——.
3,
441
(2)原式=(-81)XgXgX(一花)
=(-16)X(一告)
=1;
2
(3)(-6.5)X(-2)-T-(―^)4-(-5).
S1
原式=13义(―2)义(―5’
51
=13X(-X-)
=13x1
13
~T-
【点评】本题主要考查了有理数乘法及有理数除法,熟练掌握有理数乘法及有理数除法法则进行求解是
解决本题的关键.
【分析】根据有理数的除法运算以及乘法运算即可求出答案.
【解答】解:原式/x4x.
_1
一五.
【点评】本题考查有理数的乘除运算,解题的关键是熟练运用有理数的乘除运算法则,本题属于基础题
型
29.(2022秋口榆树市期中)计算:(-54)+(一32).
【分析】先确定符号,再把除法化为乘法,根据有理数乘法法则计算.
441
【解答】解:原式=54义不又可乂花
=3.
【点评】本题主要考查了有理数的乘法、除法,掌握有理数乘法、除法法则,符号的确定是解题关键.
30.(2022秋口丰台区校级期中)计算:(—|)x(—;)+;.
【分析】根据有理数除法法则把有理数除法转化为乘法,再按照有理数乘法法则进行计算便可.
【解答]解:(_|)x(一令弓
327
=KX7X3
_2
=r・
【点评】本题考查的是乘除混合运算,掌握“同级运算按照从左往右的顺序进行运算”是解本题的关键.
21q
31.计算:(-2,义普+(-1.5)
【分析】化有理数除法为乘法,然后计算有理数乘法.
21q
【解答】解:(-2-)x蒜+(-1.5),
/8、15z3、
=(―亨)X正+(_?),
/8、15-2、
一(-亨)X访X(一1),
_8x15x2
=3x16x3,
_5
一孑
【点评】本题考查了有理数的乘除法,熟记计算法则即可解题,属于基础题.
14
32.计算:(-81)4-2-X§+(-16)
【分析】原式从左到右依次计算即可得到结果.
41
4X-
【解答】解:原式=81乂百、9一
16
【点评】此题考查了有理数的乘除法,熟练掌握有理数乘除法则是解本题的关键.
33.(2022秋口香洲区校级月考)计算:
41
(1)(-5)X6X(-5)X?;
(2)—9+(-0.1)+(—35).
【分析】(1)利用有理数的乘法法则原式即可;
(2)将有理数的除法转化成乘法后,利用有理数的乘法法则原式即可.
【解答】解:⑴原式=5X6xgx[
=6;
(2)原式=-9X(-10)X(―R)
=-9x10X
=-25.
【点评】本题主要考查了有理数的乘、除法,正确利用有理数的乘除法则运算是解题的关键.
34.计算:
(1)(-32)+4X(w-L);
287
(2)(-J)X4-(-1-).
【分析】根据有理数的乘除法则进行计算便可.
【解答】解:(1)(-32)-4-4X(一白)
11
=+32'/环
_1
=2;
287
(2)(―^)X(一弓)+(-1~)
288
=-3XKX13
=_128
一"72S,
【点评】本题考查了有理数乘除法,熟记有理数乘除法则是解题的关键.
35.计算:
311
(1)(-1")X(-1-)-T-(-1-).
428
C.o
(2)(-1.25)x5x(-8)4-
【分析】(1)先确定结果的符号,再计算乘除法;
(2)先确定结果的符号,再计算乘除法.
311
【解答】解:⑴原式=-匕*1;+4
428
738
=~4X2X9
=一一7.
3,
(2)原式=-1.25xWx8+W
=-5x5xSxl
443
50
=~-•
【点评】本题考查了有理数乘除法,有理数的除法要分情况灵活选择法则,若是整数与整数相除一般采
用“同号得正,异号得负,并把绝对值相除”.如果有了分数,则采用“除以一个不等于0的数,等于乘
这个数的倒数”,再约分.乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.
36.计算:
311
(1)(-P)X(-3-)4-(-1-)4-3;
524
2/1
(2)(-8)(-1-)4-(-9).
32
【分析】各式利用除法法则把除法转化成乘法运算,通过约分即可得到结果.
374114
311XXX-
一
-一---
【解答】解:(1)(—耳)X(-3-)4-(-1—)4-3=525325
324
2/1331
(2)(-8)+与义(-1-)4-(-9)=-8xaxax§=-2.
【点评】此题考查了有理数的乘除法,熟练掌握乘除法则是解本题的关键.
37.计算:
(1)(-与)X(-1)+9X(-3,
713
(2)(―^)+(-1~)~r3X(一5);
⑶(-口)X246+^X(一言).
【分析】(1)先将带分数化成假分数,再根据有理数的乘法法则和除法法则求解即可;
(2)先将带分数化成假分数,再根据有理数的乘法法则和除法法则求解即可;
(3)根据有理数的乘法法则和除法法则求解即可.
【解答】解:⑴原式=一5x(-1)x|x(一明
=[(-。)X(―^)[X[(―1)X^-]
1
=1义(一交)
1
12;
(2)原式=(一分7X(一4三)x1|x2(-|)
413
二一("X-X-X-)
535
14
~25;
(3)原式=(-2U)*246*百义(—石)
3103
=宓XqX5Tx246
13
飞X5Tx246
$246
【点评】本题主要考查了有理数的乘除混合运算,掌握有理数的乘法和除法法则是解题的关键,注意运
算顺序.
【分析】根据除以一个数等于乘以这个数的倒数,可把除法转化成乘法,根据有理数的乘法,可得答案.
【解答】解:原式=(-1)x(-1)+|x(-|)
=3+(-2)
=1.
【点评】本题考查了有理数的除法,先转化成乘法,再进行乘法运算,注意两数相乘同号得正,异号得
负,再把绝对值相乘.
39.计算:1/x(—2劣+3+(—23.
【分析】直接利用二次根式的乘除运算法则进行计算得出答案.
【解答】解:原式=gx(T+*+(-令
=*(-竽+$x(T)
=jX(-Z)X(-1)
=1.
40.计算:1.25x一■^■)+U+6.
【分析】把小数化为分数,利用乘法分配律计算,把除法转化为乘法,利用有理数的乘法法则计算,最后
算加减即可.
【解答】解:原式=1x,_)xK+竽X、
11,2
-2-6+5
_11
一廿
【点评】本题考查了有理数的混合运算,掌握乘法分配律a(6+c)=06+ac是解题的关键,注意运算顺序.
41•计算:T)4(Y)+*
【分析】首先将除法转化为乘法,然后按照有理数的乘法法则计算即可.
【解答】解;原式=(—g)x(—;)+*(一令=2+(-2)=0.
【点评】本题主要考查的是有理数的乘除运算,掌握有理数的乘法和除法法则是解题的关键.
711Q1
42•计算:(-2)X(%一5)X14^(-2)
【分析】根据除以一个数等于乘以这个数的倒数,可转化成乘法运算,再根据乘法运算法则,可得答案.
,71?
【解答】解:原式=(-x(—手)'诃*(—2)
1
--2-
【点评】本题考查了有理数的除法运算,除以一个数等于乘以这个数的倒数是解题关键.
43.计算:
⑴[&RA*"一》
(2)-5x(-^)+11x(-^)-3x(-^).
【分析】(1)先把括号里面的利用乘法分配律进行计算,然后再次利用乘法分配律进行计算即可得解;
(2)先把第三项整理,然后逆运用乘法分配律进行计算即可得解.
1313I
【解答】解:(1)[1—X24]X(—<),
24o643
=[19-3(产+1*2a4曰24)]><(-11),
25、z1
L245
25i
=(三+5)*(z一耳),
2511
--X---
2455
5
-_-
24
29
-万;
(2)-5X(-H)+HX(-H)-3X(-H),
八//11、…//11、八,/11、
=-5X(一飞-)+HX(一-三)-6X(一号),
—(-5+11-6)X(―^),
=0.
【点评】本题考查了有理数的乘法,利用运算定律可以使计算更加简便,难点在于(2)的整理.
44.计算:
11
(1)-1+(-g)-3+(一]);
111
(2)-81+可-(-g)・
1
(3)—1+5+(—G)X(—6);
⑷(AA+L
【分析】(1)(2)(3)根据除以一个数等于乘以这数的倒数把除法转化为乘法运算,然后根据有理数的
乘法运算法则和加法运算法则进行计算即可得解;
(4)先算小括号里面的,再根据除以一个数等于乘以这数的倒数把除法转化为乘法运算并把带分数化为
假分数,然后根据有理数的乘法运算法则进行计算即可得解.
11
【解答】解:⑴-1+(-第-34-(一今
=-IX(-8)-3X(-2)
=8+6
=14;
111
(2)-81+/—(-g)
1
=-81X3-^x(-9)
=-243+3
=-240;
1
(3)-1+54-(一,X(-6)
6
=-1+5X(-6)X(-6)
=-1+180
=179;
1111
(4)(—-—)4-1—+一
32410
14
=-^x1X10
o5
4
--3-
【点评】本题考查了有理数的除法,有理数的乘法,有理数的加减法运算,熟记运算法则和运算顺序是
解题的关键,计算时要注意运算符号的处理.
45.计算.
1
(1)1.25+(-0.5)+(-2]);
⑵(-45)+[(-$+(一5];
⑶(H+3+T);
⑷—3'23一否1.
【分析】(1)先把小数化为分数,再把除法运算化为乘法运算,然后约分即可;
(2)要算中括号内的除法运算;
(3)先把除法运算化为乘法运算,然后利用乘法的分配律计算;
(4)先确定符合,再把带分数写成整数与真分数的和,然后利用乘法的分配律计算.
【解答】解:(1)原式=5X(-2)X(一副
=1;
“15
(2)原式=-45+(-X-)
=-45。
=-45x1
=-54;
,157
(3)原式=(---+-)X(-18)
369
=lx(-18)-1x(-18)+.X(-18)
=-6+15-14
=-5;
(4)原式=(3+为)X12
23
=3X12+力X12
23
=36+三
1
=36+11-
1
=47?
【点评】本题考查了有理数除法:除以一个不等于0的数,等于乘这个数的倒数.
46.计算:
⑴/7m11+3i5;
⑵(A油-各+T)-
【分析】(1)先计算括号中的运算,以及除法化为乘法运算,约分即可得到结果;
(2)原式先将除法运算化为乘法运算,再利用乘法分配律计算即可得到结果.
【解答】解:⑴原式=gx(-1)x|xi
2
--25;
,5319
(2)原式=+)X(-42)
67314
=-35+18-14+27
=-4.
【点评】此题考查了有理数的乘法与除法,熟练掌握运算法则是解本题的关键.
工题型八利用“倒数法”解决问题
47.数学老师布置了一道思考题“计算:(―务)+弓—I)”,小明仔细思考了一番,用了一种不同的方法
解决了这个问题.
15115
小明的解法:原式的倒数为(§一”+(一立)=<3-6)*(-12)=-4+10=6,
所以T)
(1)请你判断小明的解答是否正确,并说明理由.
(2)请你运用小明的解法解答下面的问题.
计算:(-谷)
【分析】(1)正确,利用倒数的定义判断即可;
(2)求出原式的倒数,即可确定出原式的值.
【解答】解:(1)正确,理由为:一个数的倒数的倒数等于原数;
1131113
(2)原式的倒数为(:一二+::)+(—/)=(二一二+二)X(-24)=-8+4-9=-13,
368368
,11131
则(一再)+(§—/+?=-*•
【点评】此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.
48.请你认真阅读下列材料
12112
计算:(—玄)+(i-W+6-5)
…,12112I51I1
解法1:原式=(-30)^[3+g-(元+g)尸(—药)+(6-2)=(一酎)X3=-10
解法2:将原式的除数与被除数互换
2112I2112
(二—77+二—二):(―Q7T)—(二一十二一二)X(-30)=-20+3-5+12=-10
310653031065
故原式=一点
根据你对所提供的材料的理解,选择适当的方法计算下面的算式:
11324
(一钮)+(飞—麓+37)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年份保安服务公司战略合作合同2篇
- 2024年标准小型建筑工程施工协议模板下载版B版
- 2024年度保险合同的保险责任及除外条款
- 2024年公共安全设备采购合同3篇
- 2024至2030年中国天然洗面奶行业投资前景及策略咨询研究报告
- 2024至2030年中国复方玫瑰美白精油行业投资前景及策略咨询研究报告
- 2024年度人力资源和社会保障厅合作合同版B版
- 2024年度新能源项目采购合同签订流程与绿色发展理念3篇
- 2024年度房地产企业供应链管理承包合同2篇
- 2024至2030年日化用香精项目投资价值分析报告
- 电缆敷设专项施工方案
- 石油测井方案与应急处置预案
- 500地形图测绘技术设计方案
- DB15-T 3677-2024 大兴安岭林区白桦树汁采集技术规程
- Unit-3-UI-The-Road-to-Success-高中英语新教材外研版(选择性必修第一册)
- GB/T 22838.6-2024卷烟和滤棒物理性能的测定第6部分:硬度
- 2024眩晕病(原发性高血压)优势病种诊疗方案
- 2023-2024年福建高中物理会考试卷(福建会考卷)
- 英语雅思8000词汇表
- 广东省中山市2023-2024学年九年级上学期期末语文试题及答案
- 西方文明通论学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论