版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省郑州外国语中学数学高二上期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面,的法向量分别为,,则()A. B.C.,相交但不垂直 D.,的位置关系不确定2.已知等比数列{an}的前n项和为S,若,且,则S3等于()A.28 B.26C.28或-12 D.26或-103.圆关于直线对称圆的标准方程是()A. B.C. D.4.某企业甲车间有200人,乙车间有300人,现用分层抽样的方法在这两个车间中抽取25人进行技能考核,则从甲车间抽取的人数应为()A.5 B.10C.8 D.95.下列结论中正确的个数为()①,;②;③A.0 B.1C.2 D.36.在中,角、、的对边分别是、、,若.则的大小为()A. B.C. D.7.在中,B=60°,,,则AC边的长等于()A. B.C. D.8.已知抛物线的焦点为,直线过点与抛物线相交于两点,且,则直线的斜率为()A. B.C. D.9.已知数列,,则下列说法正确的是()A.此数列没有最大项 B.此数列的最大项是C.此数列没有最小项 D.此数列的最小项是10.曲线在处的切线的斜率为()A.-1 B.1C.2 D.311.过点且与椭圆有相同焦点的双曲线方程为()A B.C. D.12.已知等差数列前项和为,且,,则此数列中绝对值最小的项为A.第5项 B.第6项C.第7项 D.第8项二、填空题:本题共4小题,每小题5分,共20分。13.已知,为双曲线的左、右焦点,过作的垂线分别交双曲线的左、右两支于B,C两点(如图).若,则双曲线的渐近线方程为______14.已知p:“”为真命题,则实数a的取值范围是_________.15.直线被圆所截得的弦中,最短弦所在直线的一般方程是__________16.函数是R上的单调递增函数,则a的取值范围是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列中,已知且(1)求的通项公式;(2)设,求数列前项和18.(12分)某城市地铁公司为鼓励人们绿色出行,决定按照乘客经过地铁站的数量实施分段优惠政策,不超过12站的地铁票价如下表:乘坐站数票价(元)246现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过12站,且他们各自在每个站下地铁的可能性是相同的.(1)若甲、乙两人共付费6元,则甲、乙下地铁的方案共有多少种?(2)若甲、乙两人共付费8元,则甲比乙先下地铁的方案共有多少种?19.(12分)已知函数(1)讨论的单调区间;(2)求在上的最大值.20.(12分)在复数集C内方程有六个根分别为(1)解出这六个根;(2)在复平面内,这六个根对应的点分别为A,B,C,D,E,F;求多边形ABCDEF的面积21.(12分)进入11月份,大学强基计划开始报名,某“五校联盟”统一对五校高三学生进行综合素质测试,在所有参加测试的学生中随机抽取了部分学生的成绩,得到如图2所示的成绩频率分布直方图:(1)估计五校学生综合素质成绩的平均值和中位数;(每组数据用该组的区间中点值表示)(2)某校决定从本校综合素质成绩排名前6名同学中,推荐3人参加强基计划考试,若已知6名同学中有4名理科生,2名文科生,试求这3人中含文科生的概率.22.(10分)已知函数,.(1)令,求函数的零点;(2)令,求函数的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用向量法判断平面与平面的位置关系.【详解】因为平面,的法向量分别为,,所以,即不垂直,则,不垂直,因为,即即不平行,则,不平行,所以,相交但不垂直,故选:C2、C【解析】根据等比数列的通项公式列出方程求解,直接计算S3即可.【详解】由可得,即,所以,又,解得,所以,即,当时,,所以,当时,,所以,故选:C3、D【解析】先根据圆的标准方程得到圆的圆心和半径,求出圆心关于直线的对称点,进而写出圆的标准方程.【详解】因为圆的圆心为,半径为,且关于直线对称的点为,所以所求圆的圆心为、半径为,即所求圆的标准方程为.故选:D.4、B【解析】根据分层抽样的定义即可求解.【详解】从甲车间抽取的人数为人故选:B5、C【解析】构造函数利用导数说明函数的单调性,即可判断大小,从而得解;【详解】解:令,,则,所以在上单调递增,所以,即,即,,故①正确;令,,则,所以当时,,当时,,所以在上单调递减,在上单调递增,所以,即恒成立,所以,故②正确;令,,当时,当时,所以在上单调递减,在上单调递增,所以,即,所以,当且仅当时取等号,故③错误;故选:C6、B【解析】利用余弦定理结合角的范围可求得角的值,再利用三角形的内角和定理可求得的值.【详解】因为,则,则,由余弦定理可得,因为,则,故.故选:B.7、B【解析】根据正弦定理直接计算可得答案.【详解】由正弦定理,,得,故选:B.8、B【解析】设直线倾斜角为,由,及,可求得,当点在轴上方,又,求得,利用对称性即可得出结果.【详解】设直线倾斜角为,由,所以,由,,所以,当点在轴上方,又,所以,所以由对称性知,直线的斜率.故选:B.9、B【解析】令,则,,然后利用函数的知识可得答案.【详解】令,则,当时,当时,,由双勾函数的知识可得在上单调递增,在上单调递减所以当即时,取得最大值,所以此数列的最大项是,最小项为故选:B10、D【解析】先求解出导函数,然后代入到导函数中,所求导数值即为切线斜率.【详解】因为,所以,所以切线的斜率为.故选:D.11、D【解析】设双曲线的方程为,再代点解方程即得解.【详解】解:由得,所以椭圆的焦点为.设双曲线的方程为,因为双曲线过点,所以.所以双曲线的方程为.故选:D12、C【解析】设等差数列的首项为,公差为,,则,又,则,说明数列为递减数列,前6项为正,第7项及后面的项为负,又,则,则在数列中绝对值最小的项为,选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线的定义先计算出,,注意到图中渐近线,于是利用两种不同的表示法列方程求解.【详解】,则,由双曲线的定义及在右支上,,又在左支上,则,则,在中,由余弦定理,,而图中渐近线,于是,得,于是,不妨令,化简得,解得,渐近线就为:.故答案为:.14、【解析】根据条件将问题转化不等式在上有解,则,由此求解出的取值范围.【详解】因为“”为真命题,所以不等式在上有解,所以,所以,故答案为:.15、【解析】先求出直线所过的定点,当该定点为弦的中点时弦长最短,利用点斜式求出直线方程,整理成一般式即可.【详解】即,令,解得即直线过定点圆的圆心为,半径为,最短弦所在直线的方程为整理得最短弦所在直线的一般方程是故答案为:.16、【解析】对求导,由题设有恒成立,再利用导数求的最小值,即可求a的范围.【详解】由题设,,又在R上的单调递增函数,∴恒成立,令,则,∴当时,则递减;当时,则递增.∴,故.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由等差数列基本量的计算即可求解;(2)由裂项相消求和法即可求解.【小问1详解】解:由题意,设等差数列的公差为,则,,解得,;【小问2详解】解:,.18、(1)24(种)(2)21(种)【解析】(1)先根据共付费6元得一人付费2元一人付费4元,再确定人与乘坐站数,即可得结果;(2)先根据共付费8元得一人付费2元一人付费6元或两人都付费4元,再求甲比乙先下地铁的方案数.【小问1详解】由已知可得:甲、乙两人共付费6元,则甲、乙一人付费2元一人付费4元,又付费2元的乘坐站数有1,2,3三种选择,付费4元的乘坐站数有4,5,6,7四种选,所以甲、乙下地铁的方案共有(3×4)×2=24(种).【小问2详解】甲、乙两人共付费8元,则甲、乙一人付费2元一人付费6元或两人都付费4元;当甲付费2元,乙付费6元时,甲乘坐站数有1,2,3三种选择,乙乘坐站数有8,9,10,11,12五种选择,此时,共有35=15(种)方案;当两人都付费4元时,若甲在第4站下地铁,则乙可在第5,6,7站下地铁,有3种方案;若甲在第5站下地铁,则乙可在第6,7站下地铁,有2种方案;若甲在第6站下地铁,则乙可在第7站下地铁,有1种方案;综上,甲比乙先下地铁的方案共有(种).19、(1)①,在上单减;②,在上单增,单减;(2).【解析】(1),根据函数定义域,分,,讨论求解;(2)根据(1)知:分,,,讨论求解.【小问1详解】解:(1)定义域,①时,成立,所以在上递减;②时,当时,,当时,,所以在上单增,单减;【小问2详解】由(1)知:时,在单减,所以;时,在单减,所以;时,在上单增,上递减,所以;时,在单增,所以;综上:.20、(1)(2)【解析】(1)原式可因式分解为,令,设可求解出的两个虚根,同理可求解的两个虚根,即得解;(2)六个点构成的图形为正六边形,边长为1,计算即可【小问1详解】由题意,当时,设故,所以解得:,即当时,设故所以解得:,即故:【小问2详解】六个根对应的点分别为A,B,C,D,E,F,其中在复平面中描出这六个点如图所示:六个点构成的图形为正六边形,边长为1故21、(1)平均值为74.6分,中位数为75分;(2).【解析】(1)利用频率分布直方图平均数和中位数算法直接计算即可;(2)将学生编号,用枚举法求解即可.【小问1详解】依题意可知:∴综合素质成绩的平均值为74.6分.由图易知∵分数在50~60、60~70、70~80的频率分别为0.12、0.18、0.40,∴中位数在70~80之间,设为,则,解得,∴综合素质成绩的中位数为75分.【小问2详解】设这6名同学分别为,,,,1,2,其中设1,2为文科生,从6人中选出3人,所有的可能的结果为,,,,,,,,,,,,,,,,,,,,共20种,其中含有文科学生的有,,,,,,,,,,,,,,,,共16种,∴含文科生的概率为.22、(1)答案见解析(2)答案见解析【解析】(1)函数零点的个数,就是方程的解的个数,显然是方程的一个解,再对a分类讨论,即得函数的零点;(2)令,可得,得,再对二次函数的对称轴分三种情况讨论得解.【详解】(1)由,可知函数零点的个数,就是方程的解的个数,显然是方程的一个解;当时,方程可化为,得,由函数单调递增,且值域为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《标准化与标准编写》课件
- 人教版八年级生物下册第一节植物的生殖教学课件
- 七年级写作专题作文如何选材课件
- 单位管理制度汇编大合集【职员管理】
- 单位管理制度合并汇编【人力资源管理】
- 单位管理制度呈现汇编员工管理十篇
- 《电脑常识赛宣讲》课件
- 《容积和容积单位》课件
- 《产品开发管理V》课件
- 三角形的初步认识课件
- 危机管理与应急响应
- 《安全生产法》宣传周活动宣贯课件
- 2024年度废钢再生资源买卖合同样本3篇
- 2024年综合实践活动课程实施计划(4篇)
- 陆军第七十五集团军医院招聘笔试真题2023
- 2024年度锅炉安全检验与保养服务合同3篇
- 《政府经济学》期末考试复习题及答案
- 中南大学《大学物理C(一)》2023-2024学年第一学期期末试卷
- 2024年01月11042国际经济法期末试题答案
- 高中生物课件
- 物业年会讲话稿范文
评论
0/150
提交评论