北京市徐悲鸿中学2025届高一数学第一学期期末教学质量检测模拟试题含解析_第1页
北京市徐悲鸿中学2025届高一数学第一学期期末教学质量检测模拟试题含解析_第2页
北京市徐悲鸿中学2025届高一数学第一学期期末教学质量检测模拟试题含解析_第3页
北京市徐悲鸿中学2025届高一数学第一学期期末教学质量检测模拟试题含解析_第4页
北京市徐悲鸿中学2025届高一数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市徐悲鸿中学2025届高一数学第一学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数是奇函数,则的值为()A.1 B.C.0 D.2.设,是两个不同的平面,,是两条不同的直线,且,A.若,则 B.若,则C.若,则 D.若,则3.若,则a,b,c的大小关系是()A. B.C. D.4.若函数的图象上存在一点满足,且,则称函数为“可相反函数”,在①;②;③;④中,为“可相反函数”的全部序号是()A.①② B.②③C.①③④ D.②③④5.某班有50名学生,编号从1到50,现在从中抽取5人进行体能测试,用系统抽样确定所抽取的第一个样本编号为3,则第四个样本编号是A.13 B.23C.33 D.436.在下列区间中,函数f(x)=ex+2x﹣5的零点所在的区间为()A.(﹣1,0) B.(0,1)C.(1,2) D.(2,3)7.命题p:,的否定是()A., B.,C., D.,8.为了给地球减负,提高资源利用率,垃圾分类在全国渐成风尚,假设2021年两市全年用于垃圾分类的资金均为万元.在此基础上,市每年投入的资金比上一年增长20%,市每年投入的资金比上一年增长50%,则市用于垃圾分类的资金开始超过市的两倍的年份是()(参考数据:)A.2022年 B.2025届C.2025届 D.2025年9.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其姓名命名的“高斯函数”为,其中表示不超过的最大整数,例如,已知函数,令函数,则的值域为()A.B.C.D.10.“”是“”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在平面直角坐标系中,矩形的顶点、分别在轴非负半轴和轴的非负半轴上滑动,顶点在第一象限内,,,设.若,则点的坐标为______;若,则的取值范围为______.12.已知定义在R上的函数满足,且当时,,若对任都有,则m的取值范围是_________13.若函数在上存在零点,则实数的取值范围是________14.如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为________15.函数=(其中且)的图象恒过定点,且点在幂函数的图象上,则=______.16.__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在R上的奇函数,当时,(Ⅰ)求函数在R上的解析式;(Ⅱ)若,函数,是否存在实数m使得的最小值为,若存在,求m的值;若不存在,请说明理由18.已知函数,,(1)求的解析式和最小正周期;(2)求在区间上的最大值和最小值19.定义在上奇函数,已知当时,求实数a的值;求在上的解析式;若存在时,使不等式成立,求实数m的取值范围20.某厂生产某种产品的年固定成本为万元,每生产千件,需另投入成本为.当年产量不足千件时,(万元);当年产量不小于千件时,(万元).通过市场分析,若每件售价为元时,该厂年内生产的商品能全部售完.(利润销售收入总成本)(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大?21.已知函数,,设(其中表示中的较小者).(1)在坐标系中画出函数的图像;(2)设函数的最大值为,试判断与1的大小关系,并说明理由.(参考数据:,,)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据奇函数的定义可得,代入表达式利用对数的运算即可求解.【详解】函数是奇函数,则,即,从而可得,解得.当时,,即定义域为,所以时,是奇函数故选:D【点睛】本题考查了函数奇偶性的应用,需掌握函数奇偶性的定义,同时本题也考查了对数的运算,属于基础题.2、A【解析】由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得考点:空间线面平行垂直的判定与性质3、A【解析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【详解】解:是增函数,是增函数.,又,【点睛】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.4、D【解析】根据已知条件把问题转化为函数与直线有不在坐标原点的交点,结合图象即可得到结论.【详解】解:由定义可得函数为“可相反函数”,即函数与直线有不在坐标原点的交点①的图象与直线有交点,但是交点在坐标原点,所以不是“可相反函数”;②的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”;③与直线有交点在第二象限,且交点不在坐标原点,所以是“可相反函数”;④的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”.结合图象可得:只有②③④符合要求;故选:D5、C【解析】根据系统抽样的定义,求出抽取间隔,即可得到结论.【详解】由题意,名抽取名学生,则抽取间隔为,则抽取编号为,则第四组抽取的学生编号为.故选:【点睛】本题考查系统抽样,等间距抽取,属于简单题.6、C【解析】由零点存在性定理即可得出选项.【详解】由函数为连续函数,且,,所以,所以零点所在的区间为,故选:C【点睛】本题主要考查零点存在性定理,在运用零点存在性定理时,函数为连续函数,属于基础题.7、C【解析】根据特称命题的否定是全称命题即可求解.【详解】解:命题p:,的否定是:,,故选:C.8、D【解析】设经过年后,市投入资金为万元,市投入资金为万元,即可表示出、,由题意可得,利用对数的运算性质解出的取值范围即可【详解】解:设经过年后,市投入资金为万元,则,市投入资金为万元,则由题意可得,即,即,即,即所以,所以,即2025年该市用于垃圾分类的资金开始超过市的两倍;故选:D9、C【解析】先进行分离,然后结合指数函数与反比例函数性质求出的值域,结合已知定义即可求解【详解】解:因为,所以,所以,则的值域故选:C10、B【解析】利用充分条件,必要条件的定义即得.【详解】由可推出,由,即或,推不出,故“”是“”的充分不必要条件.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,设点、,根据锐角三角函数的定义可得出点、的坐标,然后利用平面向量数量积的坐标运算和二倍角的正弦公式可求出的取值范围.【详解】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,如下图所示:则,设点、,则,,,.当时,,,则点;由上可知,,,则,因此,的取值范围是.故答案为:;.【点睛】本题考查点的坐标的计算,同时也考查了平面向量数量积的取值范围的求解,解题的关键就是将点的坐标利用三角函数表示,考查运算求解能力,属于中等题.12、,【解析】作出当,时,的图象,将其图象分别向左、向右平移个单位(横坐标不变,纵坐标变为原来的或2倍),得到函数的图象,令,求得的最大值,可得所求范围【详解】解:因为满足,即;又由,可得,画出当,时,的图象,将在,的图象向右平移个单位(横坐标不变,纵坐标变为原来的2倍),再向左平移个单位(横坐标不变,纵坐标变为原来的倍),由此得到函数的图象如图:当,时,,,,又,所以,令,由图像可得,则,解得,所以当时,满足对任意的,,都有,故的范围为,故答案为:,13、【解析】分和并结合图象讨论即可【详解】解:令,则有,原命题等价于函数与在上有交点,又因为在上单调递减,且当时,,在上单调递增,当时,作出两函数的图像,则两函数在上必有交点,满足题意;当时,如图所示,只需,解得,即,综上所述实数的取值范围是.故答案为:14、2.【解析】分析:要求小虫爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果详解:由题意知底面圆的直径AB=2,故底面周长等于2π.设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得2π=,解得n=90,所以展开图中∠PSC=90°,根据勾股定理求得PC=2,所以小虫爬行的最短距离为2.故答案为2点睛:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决三、15、9【解析】由题意知,当时,.即函数=的图象恒过定点.而在幂函数的图象上,所以,解得,即,所以=9.16、1【解析】应用诱导公式化简求值即可.【详解】原式.故答案为:1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)存在实数使得的最小值为【解析】Ⅰ根据奇函数的对称性进行转化求解即可Ⅱ求出的表达式,利用换元法转化为一元二次函数,通过讨论对称轴与区间的关系,判断最小值是否满足条件即可【详解】Ⅰ若,则,∵当时,且是奇函数,∴当时,,即当时,,则Ⅱ若,,设,∵,∴,则等价为,对称轴为,若,即时,在上为增函数,此时当时,最小,即,即成立,若,即时,在上为减函数,此时当时,最小,即,此时不成立,若,即时,在上不单调,此时当时,最小,即,此时在时是减函数,当时取得最小值为,即此时不满足条件综上只有当才满足条件即存在存在实数使得最小值为【点睛】本题主要考查函数奇偶性的应用,以及利用换元法转化为一元二次函数,结合一元二次函数单调性的性质是解决本题的关键,综合性较强,运算量较大,有一定的难度18、(1),;(2)最大值2,最小值【解析】(1)先将代入,结合求出函数解析式,再用公式求出最小正周期.(2)根据,求出的范围,再求出的范围,即可得出在区间上的最大值和最小值.【详解】解:(1)因为,,所以,所以,又因为,所以,故的解析式为,所以的最小正周期为.(2)因为,所以,所以,则,故在区间上的最大值2,最小值.【点睛】本题主要考查了三角函数的恒等变换的应用,三角函数的性质,注重对基础知识的考查.19、(1);(2);(3).【解析】根据题意,由函数奇偶性的性质可得,解可得的值,验证即可得答案;当时,,求出的解析式,结合函数的奇偶性分析可得答案;根据题意,若存在,使得成立,即在有解,变形可得在有解设,分析的单调性可得的最大值,从而可得结果【详解】根据题意,是定义在上的奇函数,则,得经检验满足题意;故;根据题意,当时,,当时,,又是奇函数,则综上,当时,;根据题意,若存在,使得成立,即在有解,即在有解又由,则在有解设,分析可得上单调递减,又由时,,故即实数m的取值范围是【点睛】本题考查函数的奇偶性的应用,以及指数函数单调性的应用,属于综合题20、(1);(2)万件.【解析】(1)由题意,分别写出与对应的函数解析式,即可得分段函数解析式;(2)当时,利用二次函数的性质求解最大值,当时,利用基本不等式求解最大值,比较之后得整个范围的最大值.【详解】解:(1)当,时,当,时,∴(2)当,时,,∴当时,取得最大值(万元)当,时,当且仅当,即时等号成立.即时,取得最大值万元综上,所以即生产量为万件时,该厂在这一商品的生产中所获利润最大为万元【点睛】与函数相关的应用题在求解的过程中需要注意函数模型的选择,注意分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论