2025届新疆巴州三中高二上数学期末达标检测试题含解析_第1页
2025届新疆巴州三中高二上数学期末达标检测试题含解析_第2页
2025届新疆巴州三中高二上数学期末达标检测试题含解析_第3页
2025届新疆巴州三中高二上数学期末达标检测试题含解析_第4页
2025届新疆巴州三中高二上数学期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届新疆巴州三中高二上数学期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是定义在上的奇函数,对任意两个不相等的正数、都有,记,,,则()A. B.C. D.2.函数的大致图象为A. B.C. D.3.已知椭圆:的左、右焦点分别为,,下顶点为,直线与椭圆的另一个交点为,若为等腰三角形,则椭圆的离心率为()A. B.C. D.4.设,分别是双曲线:的左、右焦点,过点作的一条渐近线的垂线,垂足为,,为坐标原点,则双曲线的离心率为()A. B.2C. D.5.在等差数列中,已知,则数列的前9项和为()A. B.13C.45 D.1176.已知等比数列的前n项和为,公比为q,若,则下列结论正确的是()A. B.C. D.7.函数在定义域上是增函数,则实数m的取值范围为()A. B.C. D.8.古希腊数学家阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将之称为阿波罗尼斯圆.现有椭圆为椭圆长轴的端点,为椭圆短轴的端点,,分别为椭圆的左右焦点,动点满足面积的最大值为面积的最小值为,则椭圆的离心率为()A. B.C. D.9.下列曲线中,与双曲线有相同渐近线是()A. B.C. D.10.设是椭圆的两个焦点,是椭圆上一点,且.则的面积为()A.6 B.C.8 D.11.将直线绕着原点逆时针旋转,得到新直线的斜率是()A. B.C. D.12.命题P:ax2+2x﹣1=0有实数根,若¬p是假命题,则实数a的取值范围是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}二、填空题:本题共4小题,每小题5分,共20分。13.已知直线l的方向向量,平面的法向量,若,则______14.从10名大学毕业生中选3个人担任村主任助理,则甲、乙至少有1人入选,而丙没有入选不同选法的种数为___________.15.设函数是函数的导函数,已知,且,则使得成立的x的取值范围是_________.16.已知函数在点处的切线为直线l,则l与坐标轴围成的三角形面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为等差数列,满足,.(1)求数列的通项公式;(2)求数列的前n项和,并求的最大值.18.(12分)已知等差数列的前项和为,.(1)求数列的通项公式;(2)求的最大值及相应的的值.19.(12分)已知函数,(),(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求a,b的值(2)当时,若函数在区间[k,2]上的最大值为28,求k的取值范围20.(12分)已知点是抛物线C:上的点,F为抛物线的焦点,且,直线l:与抛物线C相交于不同的两点A,B.(1)求抛物线C的方程;(2)若,求k的值.21.(12分)已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过,,三点,求椭圆E的标准方程22.(10分)已知圆:,点A是圆上一动点,点,点是线段的中点.(1)求点的轨迹方程;(2)直线过点且与点的轨迹交于A,两点,若,求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题,可得是定义在上的偶函数,且在上单调递减,在上单调递增,根据函数的单调性,即可判断出的大小关系.【详解】设,由题,得,即,所以函数在上单调递减,因为是定义在R上的奇函数,所以是定义在上的偶函数,因此,,,即.故选:A【点睛】本题主要考查利用函数的单调性判断大小的问题,其中涉及到构造函数的运用.2、D【解析】根据函数奇偶性排除A、C.当时排除B【详解】解:由可得所以函数为偶函数,排除A、C.因为时,,排除B.故选:D.3、B【解析】由椭圆定义可得各边长,利用三角形相似,可得点坐标,再根据点在椭圆上,可得离心率.【详解】如图所示:因为为等腰三角形,且,又,所以,所以,过点作轴,垂足为,则,由,,得,因为点在椭圆上,所以,所以,即离心率,故选:B.4、D【解析】先求过右焦点且与渐近线垂直的直线方程,与渐近线方程联立求点P的坐标,再用两点间的距离公式,结合已知条件,得到关于a,c的关系式.【详解】双曲线的左右焦点分别为、,一条渐近线方程为,过与这条渐近线垂直的直线方程为,由,得到点P的坐标为,又因为,所以,所以,所以.故选:D5、C【解析】根据给定的条件利用等差数列的性质计算作答【详解】在等差数列中,因,所以.故选:C6、D【解析】根据,可求得,然后逐一分析判断各个选项即可得解.【详解】解:因为,所以,因为,所以,所以,故A错误;又,所以,所以,所以,故BC错误;所以,故D正确.故选:D.7、A【解析】根据导数与单调性的关系即可求出【详解】依题可知,在上恒成立,即在上恒成立,所以故选:A8、A【解析】由题可得动点M的轨迹方程,可得,,即求.【详解】设,,由,可得=2,化简得.∵△MAB面积的最大值为面积的最小值为,∴,,∴,即,∴故选:A9、B【解析】求出已知双曲线的渐近线方程,逐一验证即可.【详解】双曲线的渐近线方程为,而双曲线的渐近线方程为,双曲线的渐近线方程为,双曲线的渐近线方程为,双曲线的渐近线方程为.故选:B10、B【解析】利用椭圆的几何性质,得到,,进而利用得出,进而可求出【详解】解:由椭圆的方程可得,所以,得且,,在中,由余弦定理可得,而,所以,,又因为,,所以,所以,故选:B11、B【解析】由题意知直线的斜率为,设其倾斜角为,将直线绕着原点逆时针旋转,得到新直线的斜率为,化简求值即可得到答案.【详解】由知斜率为,设其倾斜角为,则,将直线绕着原点逆时针旋转,则故新直线的斜率是.故选:B.12、C【解析】根据是假命题,判断出是真命题.对分成,和两种情况,结合方程有实数根,求得的取值范围.详解】┐p是假命题,则p是真命题,∴ax2+2x﹣1=0有实数根,当a=0时,方程为2x﹣1=0,解得x=0.5,有根,符合题意;当a≠0时,方程有根,等价于△=4+4a≥0,∴a≥﹣1且,综上所述,a的可能取值为a≥﹣1故选:C【点睛】本小题主要考查根据命题否定的真假性求参数,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由,可得∥,从而可得,代入坐标列方程可求出,从而可求出【详解】因为直线l的方向向量,平面的法向量,,所以∥,所以存在唯一实数,使,所以,所以,解得,所以,故答案为:14、49【解析】丙没有入选,相当于从9个人中选3人,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选,分别求出每种情况的选法数,再利用分类加法计数原理即可得解.【详解】丙没有入选,把丙去掉,相当于从9个人中选3人,甲、乙至少有1人入选,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选.甲乙两人只有一人入选,选法有种;甲乙两人都入选,选法有种.所以,满足题意的选法共有种.故答案为:49.【点睛】本题考查组合的应用,其中涉及到分类加法计数原理,属于中档题.一些常见类型的排列组合问题的解法:(1)特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;(2)分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏;(3)间接法(排除法),从总体中排除不符合条件的方法数,这是一种间接解题的方法;(4)捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列;(5)插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空;(6)去序法或倍缩法;(7)插板法:个相同元素,分成组,每组至少一个的分组问题.把个元素排成一排,从个空中选个空,各插一个隔板,有;(8)分组、分配法:有等分、不等分、部分等分之别.15、【解析】构造函数利用导数研究单调性,即可得到答案;【详解】,令,,单调递减,且,,x的取值范围是,故答案为:16、【解析】先求出切线方程,分别得到直线与x、y轴交点,即可求出三角形的面积.【详解】由函数可得:函数,所以,.所以切线l:,即.令,得到;令,得到;所以l与坐标轴围成的三角形面积为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2),45【解析】(1)由等差数列的通项列出方程组,得出通项公式;(2)先得出,再由二次函数的性质得出最大值.【小问1详解】由,解得,即【小问2详解】,二次型函数开口向下,对称轴为,则当或时,有最大值45.18、(1)(2)当或时,有最大值是20【解析】(1)用等差数列的通项公式即可.(2)用等差数列的求和公式即可.【小问1详解】在等差数列中,∵,∴,解得,∴;【小问2详解】∵,∴,∴当或时,有最大值是2019、【解析】(1)求a,b的值,根据曲线与曲线在它们的交点处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,列方程组,即可求出的值;(2)求k的取值范围.,先求出的解析式,由已知时,设,求导函数,确定函数的极值点,进而可得时,函数在区间上的最大值为;时,函数在在区间上的最大值小于,由此可得结论试题解析:(1),因为曲线与曲线在它们的交点处具有公共切线,所以,所以;(2)当时,,,,令,则,令,得,所以在与上单调递增,在上单调递减,其中为极大值,所以如果在区间最大值为,即区间包含极大值点,所以考点:导数的几何意义,函数的单调性与最值20、(1);(2)1或.【解析】(1)根据抛物线的定义,即可求得p值;(2)由过抛物线焦点的直线的性质,结合抛物线的定义,即可求出弦长AB【详解】(1)抛物线C:的准线为,由得:,得.所以抛物线的方程为.(2)设,,由,,∴,∵直线l经过抛物线C的焦点F,∴解得:,所以k的值为1或.【点睛】考核抛物线的定义及过焦点弦的求法21、【解析】分椭圆的焦点在轴上与焦点在轴上,两种情况讨论,利用待定系数法求出椭圆方程;【详解】解:(1)当椭圆的焦点在轴上时,设其方程为(),则又点C在椭圆上,得,解得,所以椭圆E的方程为(2)当椭圆的焦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论