2025届北京市房山区市级名校高一数学第一学期期末复习检测模拟试题含解析_第1页
2025届北京市房山区市级名校高一数学第一学期期末复习检测模拟试题含解析_第2页
2025届北京市房山区市级名校高一数学第一学期期末复习检测模拟试题含解析_第3页
2025届北京市房山区市级名校高一数学第一学期期末复习检测模拟试题含解析_第4页
2025届北京市房山区市级名校高一数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市房山区市级名校高一数学第一学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线经过两点,且倾斜角为45°,则m的值为A. B.1C.2 D.2.已知集合,则()A. B.C. D.3.采用系统抽样方法从人中抽取32人做问卷调查,为此将他们随机编号为,分组后在第一组采用简单随机抽样方法抽到的号码为.抽到的人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷.则抽到的人中,做问卷的人数为A. B.C. D.4.的值是()A B.C. D.5.如果“,”是“”成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.不充分也不必要条件6.若幂函数的图象过点,则的值为()A.2 B.C. D.47.设,表示两个不同平面,表示一条直线,下列命题正确的是()A.若,,则.B.若,,则.C.若,,则.D.若,,则.8.已知全集,集合,则()A. B.C. D.9.已知函数,则函数在上单调递增,是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件10.已知函数,且在上的最大值为,若函数有四个不同的零点,则实数a的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的图象过原点,则___________12.在空间直角坐标系中,点在平面上的射影为点,在平面上的射影为点,则__________13.已知,则的值为__________14.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.15.已知函数的部分图象如图所示,则___________16.函数的定义域是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数图象的一个最高点坐标为,相邻的两对称中心的距离为求的解析式若,且,求a的值18.已知函数,)函数关于对称.(1)求的解析式;(2)用五点法在下列直角坐标系中画出在上的图象;(3)写出的单调增区间及最小值,并写出取最小值时自变量的取值集合19.已知两条直线l1:ax+2y-1=0,l2:3x+(a+1)y+1=0.(1)若l1∥l2,求实数a的值;(2)若l1⊥l2,求实数a的值20.已知向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π](1)若与共线,求x的值;(2)若⊥,求x的值;(3)记f(x)=•,当f(x)取得最小值时,求x的值21.如图,在三棱锥中,平面平面为等边三角形,且分别为的中点(1)求证:平面;(2)求证:平面平面;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由两点坐标求出直线的斜率,再由斜率等于倾斜角的正切值列出方程求得的值.【详解】因为经过两点,的直线的倾斜角为45°,∴,解得,故选A【点睛】本题主要考查了直线的斜率与倾斜角的关系,属于基础题.2、C【解析】根据并集的定义计算【详解】由题意故选:C3、C【解析】从960人中用系统抽样方法抽取32人,则抽样距为k=,因为第一组号码为9,则第二组号码为9+1×30=39,…,第n组号码为9+(n-1)×30=30n-21,由451≤30n-21≤750,得,所以n=16,17,…,25,共有25-16+1=10(人)考点:系统抽样.4、C【解析】由,应用诱导公式求值即可.【详解】.故选:C5、A【解析】利用充分条件和必要条件的定义判断.【详解】当,时,,故充分;当时,,,故不必要,故选:A6、C【解析】设,利用的图象过点,求出的解析式,将代入即可求解.【详解】设,因为的图象过点,所以,解得:,所以,所以,故选:C.7、C【解析】由或判断;由,或相交判断;根据线面平行与面面平行的定义判断;由或相交,判断.【详解】若,,则或,不正确;若,,则,或相交,不正确;若,,可得没有公共点,即,正确;若,,则或相交,不正确,故选C.【点睛】本题主要考查空间平行关系的性质与判断,属于基础题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.8、A【解析】首先进行并集运算,然后进行补集运算即可.【详解】由题意可得:,则.故选:A.9、A【解析】根据充分、必要条件的定义证明即可.【详解】因为函数在上单调递增,则,恒成立,即恒成立,,即.所以“”是“”的充分不必要条件.故选:A.10、B【解析】由在上最大值为,讨论可求出,从而,若有4个零点,则函数与有4个交点,画出图象,结合图象求解即可【详解】若,则函数在上单调递增,所以的最小值为,不合题意,则,要使函数在上的最大值为如果,即,则,解得,不合题意;若,即,则解得即,则如图所示,若有4个零点,则函数与有4个交点,只有函数的图象开口向上,即当与)有一个交点时,方程有一个根,得,此时函数有二个不同的零点,要使函数有四个不同的零点,与有两个交点,则抛物线的图象开口要比的图象开口大,可得,所以,即实数a的取值范围为故选:B【点睛】关键点点睛:此题考查函数与方程的综合应用,考查二次函数的性质的应用,考查数形结合的思想,解题的关键是由已知条件求出的值,然后将问题转化为函数与有4个交点,画出函数图象,结合图象求解即可,属于较难题二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】由题意可知,函数经过坐标原点,只需将原点坐标带入函数解析式,即可完成求解.【详解】因为的图象过原点,所以,即故答案为:0.12、【解析】因为点在平面上的射影为点,在平面上的射影为点,所以由两点间距离公式可得,故答案为.13、【解析】答案:14、12【解析】设该班学生中既参加了数学小组,又参加了英语小组的学生有人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有人,则.故答案为:12.15、【解析】由图象可得最小正周期的值,进而可得,又函数图象过点,利用即可求解.【详解】解:由图可知,因为,所以,解得,因为函数的图象过点,所以,又,所以,故答案为:.16、【解析】利用根式、分式的性质求函数定义域即可.【详解】由解析式知:,则,可得,∴函数定义域为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】根据函数图象的最高点的坐标以及对称中心的距离求出周期和和的值即可;根据条件进行化简,结合三角函数值的对应性进行求解即可【详解】图象相邻的两对称中心的距离为,即,则,即,图象上一个最高点为,∴,则,,即,∵,∴,∴,即,则,即函数的解析式为,若,则,即,即,∵,∴,∴或,即或【点睛】本题主要考查三角函数的图象和性质根据条件求出函数的解析式是解决本题的关键,属于中档题.18、(1),(2)详见解析(3)单调递增区间是,,最小值为,取得最小值的的集合.【解析】(1)根据函数的对称轴,列式,求;(2)利用“五点法”列表,画图;(3)根据三角函数的性质,即可求解.【小问1详解】因为函数关于直线对称,所以,,因为,所以,所以【小问2详解】首先根据“五点法”,列表如下:【小问3详解】令,解得:,,所以函数的单调递增区间是,,最小值为令,得,函数取得最小值的的集合.19、(1)a=2(2)【解析】(1)利用直线与直线平行的条件直接求解;(2)利用直线与直线垂直的条件直接求解【详解】(1)由题可知,直线l1:ax+2y-1=0,l2:3x+(a+1)y+1=0.若l1∥l2,则解得a=2或a=-3(舍去)综上,则a=2;(2)由题意,若l1⊥l2,则,解得.【点睛】本题考查实数值的求法,考查直线与直线平行与垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题20、(1);(2);(3).【解析】(1)利用两向量平行有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(2)利用两向量垂直有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(3)根据化出一个关于的方程,再利用恒等变化公式将函数转化成,从而找到最小值所取得的x的值.【详解】解:(1)∵向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π]与共线,∴,∴tanx=-,∵x∈[0,π],∴x=(2)∵⊥,∴cosx-sinx=0,∴tanx=1,∵x∈[0,π],∴x=(3)f(x)=•=cosx-,∵x∈[0,π],∴x-∈[-,],∴x-=时,f(x)取得最小值-2,∴当f(x)取得最小值时,x=【点睛】向量间的位置关系:两向量垂直,则,两向量平行,则.21、(1)证明见解析;(2)证明见解析.【解析】(1)因为分别为的中点,所以,由线面平行的判定定理,即可得到平面;(2)因为为的中点,得到,利用面面垂直的性质定理可证得平面,由面面垂直的判定定理,即可得到平面平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论