湖北省八校2025届高二数学第一学期期末检测模拟试题含解析_第1页
湖北省八校2025届高二数学第一学期期末检测模拟试题含解析_第2页
湖北省八校2025届高二数学第一学期期末检测模拟试题含解析_第3页
湖北省八校2025届高二数学第一学期期末检测模拟试题含解析_第4页
湖北省八校2025届高二数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省八校2025届高二数学第一学期期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.空气质量指数大小分为五级指数越大说明污染的情况越严重,对人体危害越大,指数范围在:,,,,分别对应“优”、“良”、“轻中度污染”、“中度重污染”、“重污染”五个等级,如图是某市连续14天的空气质量指数趋势图,下面说法错误的是().A.这14天中有4天空气质量指数为“良”B.从2日到5日空气质量越来越差C.这14天中空气质量的中位数是103D.连续三天中空气质量指数方差最小是9日到11日2.如图,平行六面体中,为的中点,,,,则()A. B.C. D.3.已知直线,,若,则实数的值是()A.0 B.2或-1C.0或-3 D.-34.下列说法中正确的是()A.存在只有4个面的棱柱 B.棱柱的侧面都是四边形C.正三棱锥的所有棱长都相等 D.所有几何体的表面都能展开成平面图形5.中国古代数学名著《算法统宗》中有这样一个问题:“今有俸粮三百零五石,令五等官(正一品、从一品、正二品、从二品、正三品)依品递差十三石分之,问,各若干?”其大意是,现有俸粮石,分给正一品、从一品、正二品、从二品、正三品这位官员,依照品级递减石分这些俸粮,问,每个人各分得多少俸粮?在这个问题中,正三品分得俸粮是()A.石 B.石C.石 D.石6.如图所示,过抛物线的焦点F的直线依次交抛物线及准线于点A,B,C.若,且,则抛物线的方程为()A. B.C. D.7.若两条平行线与之间的距离是2,则m的值为()A.或11 B.或10C.或12 D.或118.新型冠状病毒(2019-NCoV)因2019年武汉病毒性肺炎病例而被发现,2020年1月12日被世界卫生组织命名,为考察某种药物预防该疾病的效果,进行动物试验,得到如下列联表:患病未患病总计服用药104555未服药203050总计3075105下列说法正确的是()参考数据:,0.050.013.8416.635A.有95%的把握认为药物有效B.有95%的把握认为药物无效C.在犯错误的概率不超过0.05的前提下认为药物无效D.在犯错误的概率不超过0.01的前提下认为药物有效9.方程表示的曲线是()A.一个椭圆和一条直线 B.一个椭圆和一条射线C.一条射线 D.一个椭圆10.以椭圆+=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是()A. B.C. D.11.已知数列满足,若.则的值是()A. B.C. D.12.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+<0 D.∃x0∈R,|x0|+≥0二、填空题:本题共4小题,每小题5分,共20分。13.已知方程表示焦点在x轴上的双曲线,则m的取值范围为________14.从正方体的8个顶点中选取4个作为项点,可得到四面体的概率为________15.在数列中,,,则数列中最大项的数值为__________16.设,,,则动点P的轨迹方程为______,P到坐标原点的距离的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,抛物线的顶点在原点,圆的圆心恰是抛物线的焦点.(1)求抛物线的方程;(2)一条直线的斜率等于2,且过抛物线焦点,它依次截抛物线和圆于、、、四点,求的值.18.(12分)如图,已知双曲线,过向双曲线作两条切线,切点分别为,,且.(1)证明:直线的方程为.(2)设为双曲线的左焦点,证明:.19.(12分)已知椭圆C:的离心率为,短轴的一个端点到右焦点的距离为2.(1)椭圆C的方程;(2)设直线l:交椭圆C于A,B两点,且,求m的值.20.(12分)已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)过点作圆C的切线,求切线的方程21.(12分)已知椭圆E:的离心率,且右焦点到直线的距离为.(1)求椭圆的标准方程;(2)四边形的顶点在椭圆上,且对角线,过原点,若,证明:四边形的面积为定值.22.(10分)在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的存在,求实数的取值范围;若问题中的不存在,请说明理由设等差数列的前n项和为,数列的前n项和为,___________,,,是否存在实数,对任意都有?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题图分析数据,对选项逐一判断【详解】对于A,14天中有1,3,12,13共4日空气质量指数为“良”,故A正确对于B,从2日到5日空气质量指数越来越高,故空气质量越来越差,故B正确对于C,14个数据中位数为:,故C错误对于D,观察折线图可知D正确故选:C2、B【解析】先用向量与表示,然后用向量表示向量与,即可得解【详解】解:为的中点,故选:【点睛】本题考查了平面向量基本定理的应用,解决本题的关键是熟练运用向量的加法、减法及实数与向量的积的运算,属于基础题3、C【解析】由,结合两直线一般式有列方程求解即可.【详解】由知:,解得:或故选:C.4、B【解析】对于A、B:由棱柱的定义直接判断;对于C:由正三棱锥的侧棱长和底面边长不一定相等,即可判断;对于D:由球的表面不能展开成平面图形即可判断【详解】对于A:棱柱最少有5个面,则A错误;对于B:棱柱的所有侧面都是平行四边形,则B正确;对于C:正三棱锥的侧棱长和底面边长不一定相等,则C错误;对于D:球的表面不能展开成平面图形,则D错误故选:B5、D【解析】令位官员(正一品、从一品、正二品、从二品、正三品)所分得的俸粮数是公差为数列,利用等差数列的前n项和求,进而求出正三品即可.【详解】正一品、从一品、正二品、从二品、正三品这位官员所分得的俸粮数记为数列,由题意,是以为公差的等差数列,且,解得.故正三品分得俸粮数量为(石).故选:D.6、A【解析】分别过点作准线的垂线,分别交准线于点,,设,推出;根据,进而推导出,结合抛物线定义求出;最后由相似比推导出,即可求出抛物线的方程.【详解】如图分别过点作准线的垂线,分别交准线于点,,设与交于点.设,,,由抛物线定义得:,故在直角三角形中,,,,,,,∥,,,即,,所以抛物线的方程为.故选:A7、A【解析】利用平行线间距离公式进行求解即可.【详解】因为两条平行线与之间的距离是2,所以,或,故选:A8、A【解析】根据列联表计算,对照临界值即可得出结论【详解】根据列联表,计算,由临界值表可知,有95%的把握认为药物有效,A正确故选:A9、A【解析】根据题意得到或,即可求解.【详解】由方程,可得或,即或,所以方程表示的曲线为一个椭圆或一条直线.故选:A.10、B【解析】根据椭圆的几何性质求椭圆的焦点坐标和长轴端点坐标,由此可得双曲线的a,b,c,再求双曲线的标准方程.【详解】∵椭圆的方程为+=1,∴椭圆的长轴端点坐标为,,焦点坐标为,,∴双曲线的焦点在y轴上,且a=1,c=2,∴b2=3,∴双曲线方程为,故选:B.11、D【解析】由,转化为,再由求解.【详解】因为数列满足,所以,即,因为,所以,所以,故选:D12、C【解析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“,”的否定是“,”.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据焦点在轴的双曲线的标准方程的特征可得答案.【详解】因为双曲线的焦点在轴上,则,解得.所以的取值范围为故答案为:14、【解析】计算出正方体的8个顶点中选取4个作为项点的取法和分从上底面取一个点下底面取三个点、从上底面取二个点下底面取二个点、从上底面取三个点下底面取一个点可得到四面体的取法,由古典概型概率计算公式可得答案.【详解】正方体的8个顶点中选取4个作为项点,共有取法,可得到四面体的情况有从上底面取一个点下底面取三个点有种;从上底面取二个点下底面取二个点有种,其中当上底面和下底面取的四个点在同一平面时共有10种情况不符合,此种情况共有种;从上底面取三个点下底面取一个点有种;一个有种,所以可得到四面体的概率为.故答案为:.15、【解析】用累加法求出通项,再由通项表达式确定最大项.【详解】当时,,所以数列中最大项的数值为故答案为:16、①.②.l【解析】根据双曲线的定义得到动点的轨迹方程,从而求出到坐标原点的距离的最小值;【详解】解:因为,所以动点P的轨迹为以A,B为焦点,实轴长为2的双曲线的下支.因为,,所以,,,所以动点P的轨迹方程为故P到坐标原点的距离的最小值为故答案为:;;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)圆的圆心坐标为,即抛物线的焦点为,……3分∴∴抛物线方程为……6分

由题意知直线AD的方程为…7分即代入得=0设,则,……11分∴【解析】(1)设抛物线方程为,由题意求出其焦点坐标,进而可求出结果;(2)先由题意得出直线的方程,联立直线与抛物线方程,求出,再由为圆的直径,即可求出结果.【详解】(1)设抛物线方程为,圆的圆心恰是抛物线的焦点,∴.抛物线方程为:;(2)依题意直线的方程为设,,则,得,,.【点睛】本题主要考查抛物线的方程,以及直线与抛物线的位置关系;由抛物线的焦点坐标可直接求出抛物线的方程;联立直线与抛物线方程,结合韦达定理和抛物线定义可求出弦长,进而可求出结果,属于常考题型.18、(1)证明见解析(2)证明见解析【解析】(1)设出切线方程,联立后用韦达定理及根的判别式进行表达出A的横坐标与纵坐标,进而表达出直线的方程,化简即为结果;(2)再第一问的基础上,利用向量的夹角公式表达出夹角的余弦值,进而证明出结论.【小问1详解】显然直线的斜率存在,设直线的方程为,联立得,则,化简得.因为方程有两个相等实根,故切点A的横坐标,得,则,故,则,即.【小问2详解】同理可得,又与均过,所以.故,,,又因为,所以,则,,故,故.【点睛】圆锥曲线中证明角度相关的问题,往往需要转化为斜率或向量进行求解.19、(1);(2).【解析】(1)通过短轴的一个端点到右焦点的距离可知,进而利用离心率的值计算即得结论;(2)设,联立直线与椭圆方程,消去y得到关于x的一元二次方程,得到根与系数的关系,再利用弦长公式即可得出.【详解】解:(1)由题意可得,解得:,,椭圆C的方程为;(2)设,联立,得,,,,解得.【点睛】本题考查了椭圆的标准方程及其性质、韦达定理、弦长公式,属于中档题.20、(1)(2)或【解析】(1)由圆心在直线上,设,由点在圆上,列方程求,由此求出圆心坐标及半径,确定圆的方程;(2)当切线的斜率存在时,设其方程为,由切线的性质列方程求,再检验直线是否为切线,由此确定答案.小问1详解】因为圆C的圆心在直线上,设圆心的坐标为,圆C过点,,所以,即,解得,则圆心,半径,所以圆的方程为;【小问2详解】当切线的斜率存在时,设直线的方程为,即,因为直线和圆相切,得,解得,所以直线方程为,当切线的斜率不存在时,易知直线也是圆的切线,综上,所求的切线方程为或21、(1);(2)证明见解析.【解析】(1)根据已知条件列出关于a、b、c的方程组求解即可;(2)设,代入,利用韦达定理,通过,结合,转化求解即可【小问1详解】【小问2详解】设,设,代入,得,∵,∴,,∵,得,即,解得,∵,且,又,,整理得,∴为定值22、答案见解析【解析】由已知条件可得,假设时,取最小值,则,若补充条件是①,则可求得,代入化简可求出的取值范围,从而可求得答案,若补充条件是②,则可得,该数列是递减数列,所以不存在k,使得取最小值,若补充条件是③,则可得,代入化简可求出的取值范围,从而可求得答案,【详解】解:等差数列的公差为d,当时,,得,从而,当时,得,所以数列是首项为,公比为的等比数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论