下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
§4数学归纳法(二)一、基础过关1.用数学归纳法证明等式1+2+3+…+(n+3)=eq\f(n+3n+4,2)(n∈N*),验证n=1时,左边应取的项是 ()A.1 B.1+2C.1+2+3 D.1+2+3+42.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取 ()A.2 B.3C.5 D.63.已知f(n)=1+eq\f(1,2)+eq\f(1,3)+…+eq\f(1,n)(n∈N*),证明不等式f(2n)>eq\f(n,2)时,f(2k+1)比f(2k)多的项数是()A.2k-1项 B.2k+1项C.2k项 D.以上都不对4.用数学归纳法证明不等式eq\f(1,n+1)+eq\f(1,n+2)+…+eq\f(1,2n)>eq\f(11,24)(n∈N*)的过程中,由n=k递推到n=k+1时,下列说法正确的是 ()A.增加了一项eq\f(1,2k+1)B.增加了两项eq\f(1,2k+1)和eq\f(1,2k+1)C.增加了B中的两项,但又减少了一项eq\f(1,k+1)D.增加了A中的一项,但又减少了一项eq\f(1,k+1)5.已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*).依次计算出S1,S2,S3,S4后,可猜想Sn的表达式为________________.二、能力提升6.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开 ()A.(k+3)3 B.(k+2)3C.(k+1)3 D.(k+1)3+(k+2)37.k(k≥3,k∈N*)棱柱有f(k)个对角面,则(k+1)棱柱的对角面个数f(k+1)为 ()A.f(k)+k-1 B.f(k)+k+1C.f(k)+k D.f(k)+k-28.对于不等式eq\r(n2+n)≤n+1(n∈N*),某学生的证明过程如下:①当n=1时,eq\r(12+1)≤1+1,不等式成立.②假设n=k(n∈N*)时,不等式成立,即eq\r(k2+k)≤k+1,则n=k+1时,eq\r(k+12+k+1)=eq\r(k2+3k+2)<eq\r(k2+3k+2+k+2)=eq\r(k+22)=(k+1)+1,所以当n=k+1时,不等式成立,上述证法 ()A.过程全部正确B.n=1验证不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确9.用数学归纳法证明eq\f(1,22)+eq\f(1,32)+…+eq\f(1,n+12)>eq\f(1,2)-eq\f(1,n+2).假设n=k时,不等式成立.则当n=k+1时,应推证的目标不等式是_______.10.证明:62n-1+1能被7整除(n∈N*).11.求证:eq\f(1,n+1)+eq\f(1,n+2)+…+eq\f(1,3n)>eq\f(5,6)(n≥2,n∈N*).12.已知数列{an}中,a1=-eq\f(2,3),其前n项和Sn满足an=Sn+eq\f(1,Sn)+2(n≥2),计算S1,S2,S3,S4,猜想Sn的表达式,并用数学归纳法加以证明.三、探究与拓展13.试比较2n+2与n2的大小(n∈N*),并用数学归纳法证明你的结论.
答案1.D2.C3.C4.C5.Sn=eq\f(2n,n+1)6.A7.A8.D9.eq\f(1,22)+eq\f(1,32)+…+eq\f(1,k2)+eq\f(1,k+12)+eq\f(1,k+22)>eq\f(1,2)-eq\f(1,k+3)10.证明(1)当n=1时,62-1+1=7能被7整除.(2)假设当n=k(k∈N*)时,62k-1+1能被7整除.那么当n=k+1时,62(k+1)-1+1=62k-1+2+1=36(62k-1+1)-35.∵62k-1+1能被7整除,35也能被7整除,∴当n=k+1时,62(k+1)-1+1能被7整除.由(1),(2)知命题成立.11.证明(1)当n=2时,左边=eq\f(1,3)+eq\f(1,4)+eq\f(1,5)+eq\f(1,6)>eq\f(5,6),不等式成立.(2)假设当n=k(k≥2,k∈N*)时命题成立,即eq\f(1,k+1)+eq\f(1,k+2)+…+eq\f(1,3k)>eq\f(5,6).则当n=k+1时,eq\f(1,k+1+1)+eq\f(1,k+1+2)+…+eq\f(1,3k)+eq\f(1,3k+1)+eq\f(1,3k+2)+eq\f(1,3k+1)=eq\f(1,k+1)+eq\f(1,k+2)+…+eq\f(1,3k)+(eq\f(1,3k+1)+eq\f(1,3k+2)+eq\f(1,3k+3)-eq\f(1,k+1))>eq\f(5,6)+(eq\f(1,3k+1)+eq\f(1,3k+2)+eq\f(1,3k+3)-eq\f(1,k+1))>eq\f(5,6)+(3×eq\f(1,3k+3)-eq\f(1,k+1))=eq\f(5,6),所以当n=k+1时不等式也成立.由(1)和(2)可知,原不等式对一切n≥2,n∈N*均成立.12.解当n≥2时,an=Sn-Sn-1=Sn+eq\f(1,Sn)+2.∴Sn=-eq\f(1,Sn-1+2)(n≥2).则有:S1=a1=-eq\f(2,3),S2=-eq\f(1,S1+2)=-eq\f(3,4),S3=-eq\f(1,S2+2)=-eq\f(4,5),S4=-eq\f(1,S3+2)=-eq\f(5,6),由此猜想:Sn=-eq\f(n+1,n+2)(n∈N*).用数学归纳法证明:(1)当n=1时,S1=-eq\f(2,3)=a1,猜想成立.(2)假设n=k(k∈N*)时猜想成立,即Sk=-eq\f(k+1,k+2)成立,那么当n=k+1时,Sk+1=-eq\f(1,Sk+2)=-eq\f(1,-\f(k+1,k+2)+2)=-eq\f(k+2,k+3)=-eq\f(k+1+1,k+1+2).即n=k+1时猜想成立.由(1)(2)可知,对任意正整数n,猜想结论均成立.13.证明当n=1时,21+2=4>n2=1,当n=2时,22+2=6>n2=4,当n=3时,23+2=10>n2=9,当n=4时,24+2=18>n2=16,由此可以猜想,2n+2>n2(n∈N*)成立.下面用数学归纳法证明:(1)当n=1时,左边=21+2=4,右边=1,所以左边>右边,所以原不等式成立.当n=2时,左边=22+2=6,右边=22=4,所以左边>右边;当n=3时,左边=23+2=10,右边=32=9,所以左边>右边.(2)假设n=k(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创新客户服务体系驱动企业竞争力
- 创意产业园区的发展与知识产权保护
- 儿童歌曲创作与欣赏的技巧分享
- 职代会提案三篇
- 以用户体验为中心的智能型宠物社区平台开发研究
- 农业科技创新引领现代农业可持续发展
- 房地产尽职调查操作流程
- 从实践中总结经验小学生对学习需求下的课堂变革讨论
- 体育课程与校园文化的互动关系研究
- 中医药在家庭教育中的价值与影响
- 物业小区物业服务费三方监管实施方案
- 刺猬养殖研究报告-中国刺猬养殖行业市场分析及发展前景研究报告2024年
- 机械原理课程设计-高位自卸汽车的设计
- 水厂工程工艺管道及设备安装工程施工方案与技术措施
- 《社会网络分析法》课件
- 初中语文部编版九年级上册期末综合性学习专项练习(2022秋)(附参考答案和解析)
- 缩句完整版本
- 2024年水发生态产业集团有限公司招聘笔试参考题库含答案解析
- ISO9001质量管理体系培训教材
- 纸质文物保护修复的传统及现代技术研究
- 导尿术并发症的预防及处理
评论
0/150
提交评论