版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省信阳市予南高级中学高一上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知定义在R上偶函数fx满足下列条件:①fx是周期为2的周期函数;②当x∈0,1时,fx=A12 B.1C.-142.若,的终边(均不在y轴上)关于x轴对称,则()A. B.C. D.3.半径为1cm,圆心角为的扇形的弧长为()A. B.C. D.4.下列关系式中,正确的是A. B.C. D.5.命题“,”的否定为()A., B.,C., D.,6.已知,,,则a,b,c三个数的大小关系是()A. B.C. D.7.若圆锥的底面半径为2cm,表面积为12πcm2,则其侧面展开后扇形的圆心角等于()A. B.C. D.8.已知角顶点与原点重合,始边与轴的正半轴重合,点在角的终边上,则()A. B.C. D.9.直线与曲线有且仅有个公共点,则实数的取值范围是A. B.C. D.10.已知函数,若关于的方程有8个不等的实数根,则的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.两条平行直线与的距离是__________12.若,则______.13.已知α∈.若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则=______.14.函数的定义域是______________15.若函数满足,且当时,则______16.已知向量=(1,2)、=(2,λ),,∥,则λ=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在上的奇函数满足:①;②对任意的均有;③对任意的,,均有.(1)求的值;(2)证明在上单调递增;(3)是否存在实数,使得对任意的恒成立?若存在,求出的取值范围;若不存在,请说明理由.18.设集合.(1)当时,求实数的取值范围;(2)当时,求实数的取值范围.19.已知函数求:的最小正周期;的单调增区间;在上的值域20.已知函数f(x)=(a,b为常数,且a≠0)满足f(2)=1,方程f(x)=x有唯一解,(1)求函数f(x)的解析式;(2)若,求函数的最大值.21.已知函数,其中(1)若的最小值为1,求a的值;(2)若存在,使成立,求a取值范围;(3)已知,在(1)的条件下,若恒成立,求m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据函数的周期为2和函数fx是定义在R上的偶函数,可知flog【详解】因为fx是周期为2所以flog又函数fx定义在R上的偶函数,所以又当x∈0,1时,fx=所以flog23故选:B.2、A【解析】因为,的终边(均不在轴上)关于轴对称,则,,然后利用诱导公式对应各个选项逐个判断即可求解【详解】因为,的终边(均不在轴上)关于轴对称,则,,选项,故正确,选项,故错误,选项,故错误,选项,故错误,故选:3、D【解析】利用扇形弧长公式直接计算即可.【详解】圆心角化为弧度为,则弧长为.故选:D.4、C【解析】不含任何元素的集合称为空集,即为,而代表由单元素0组成的集合,所以,而与的关系应该是.故选C.5、C【解析】由全称命题的否定是特称命题可得答案.【详解】根据全称命题的否定是特称命题,所以“,”的否定为“,”.故选:C.6、A【解析】利用指数函数的单调性比较的大小,再用作中间量可比较出结果.【详解】因为指数函数为递减函数,且,所以,所以,因为,,所以,综上所述:.故选:A7、D【解析】利用扇形面积计算公式、弧长公式及其圆的面积计算公式即可得出【详解】设圆锥的底面半径为r=2,母线长为R,其侧面展开后扇形的圆心角等于θ由题意可得:,解得R=4又2π×2=Rθ∴θ=π故选D【点睛】本题考查了扇形面积计算公式、弧长公式及其圆的面积计算公式,考查了推理能力与计算能力,属于基础题8、D【解析】先根据三角函数的定义求出,然后采用弦化切,代入计算即可【详解】因为点在角的终边上,所以故选:D9、A【解析】如图所示,直线过点,圆的圆心坐标直线与曲线相切时,,直线与曲线有且仅有个公共点,则实数的取值范围是考点:直线与圆相交,相切问题10、D【解析】画出函数的图象,利用函数的图象,判断的范围,然后利用二次函数的性质求解的范围【详解】解:函数,的图象如图:关于的方程有8个不等的实数根,必须有两个不相等的实数根且两根位于之间,由函数图象可知,.令,方程化为:,,,开口向下,对称轴为:,可知:的最大值为:,的最小值为:2故选:【点睛】本题考查函数与方程的应用,函数的零点个数的判断与应用,考查数形结合以及计算能力,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直线与平行,,得,直线,化为,两平行线距离为,故答案为.12、【解析】根据指对互化,指数幂的运算性质,以及指数函数的单调性即可解出【详解】由得,即,解得故答案为:13、-1【解析】根据幂函数,当为奇数时,函数为奇函数,时,函数在(0,+∞)上递减,即可得出答案.【详解】解:∵幂函数f(x)=xα为奇函数,∴可取-1,1,3,又f(x)=xα在(0,+∞)上递减,∴α<0,故=-1.故答案为:-1.14、【解析】由题意可得,从而可得答案.【详解】函数的定义域满足即,所以函数的定义域为故答案为:15、1009【解析】推导出,当时,从而当时,,,由此能求出的值【详解】∵函数满足,∴,∵当时,∴当时,,,∴故答案为1009【点睛】本题主要考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题16、-2【解析】首先由的坐标,利用向量的坐标运算可得,接下来由向量平行的坐标运算可得,求解即可得结果【详解】∵,∴,∵∥,,∴,解得,故答案为:-2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0;(2)详见解析;(3)存在,.【解析】(1)利用赋值法即求;(2)利用单调性的定义,由题可得,结合条件可得,即证;(3)利用赋值法可求,结合函数的单调性可把问题转化为,是否存在实数,使得或在恒成立,然后利用参变分离法即求.【小问1详解】∵对任意的,,均有,令,则,∴;【小问2详解】,且,则又,对任意的均有,∴,∴∴函数在上单调递增.【小问3详解】∵函数为奇函数且在上单调递增,∴函数在上单调递增,令,可得,令,可得,又,∴,又函数在上单调递增,在上单调递增,∴由,可得或,即是否存在实数,使得或对任意的恒成立,令,则,则对于恒成立等价于在恒成立,即在恒成立,又当时,,故不存在实数,使得恒成立,对于对任意的恒成立,等价于在恒成立,由,可得在恒成立,又,在上单调递减,∴,综上可得,存在使得对任意的恒成立.【点睛】关键点点睛:本题第二问的关键是配凑,然后利用条件可证;第三问的关键是转化为否存在实数,使得或在恒成立,再利用参变分离法解决.18、(1)(2)【解析】(1)化简集合A,B,由,得,转化为不等式关系,解之即可;(2)由,得到或,解之即可.试题解析:(1),,,即.(2)法一:,或,即法二:当时,或解得或,于是时,即19、(1);(2),;(3).【解析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论;利用正弦函数的单调性,求得的单调增区间;利用正弦函数的定义域和值域,求得在上的值域【详解】函数,故函数的最小正周期为.令,求得,可得函数的增区间为,在上,,,,即的值域为【点睛】本题主要考查三角恒等变换,正弦函数的周期性,单调性,定义域和值域,属于中档题.单调性:根据y=sint和t=的单调性来研究,由得单调增区间;由得单调减区间.20、(1)f(x)=;(2).【解析】(1)由可得,由此方程的解唯一,可得,可求出,再由f(2)=1,可求出的值,进而可求出函数f(x)的解析式;(2)由题意可得,然后求出的最小值,可得的最大值【详解】解:(1)由,得,即.因为方程有唯一解,所以,即,因为f(2)=1,所以=1,所以,所以=;(2)因为,所以,而,当,即时,取得最小值,此时取得最大值.21、(1)5(2)(3)【解析】(1)采用换元法,令,并确定的取值范围,化简为关于二次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年上海市安全员C证考试(专职安全员)题库附答案
- 贵州城市职业学院《中级财务会计Ⅱ》2023-2024学年第一学期期末试卷
- 贵州财经大学《面料认知与再造》2023-2024学年第一学期期末试卷
- 贵阳学院《音乐作品分析(一)》2023-2024学年第一学期期末试卷
- 2025黑龙江建筑安全员-C证(专职安全员)考试题库
- 贵阳信息科技学院《东方文学专题研究》2023-2024学年第一学期期末试卷
- 2025湖北省安全员B证(项目经理)考试题库
- 2025年湖南省建筑安全员知识题库附答案
- 广州幼儿师范高等专科学校《灯光造型》2023-2024学年第一学期期末试卷
- 广州新华学院《接口自动化》2023-2024学年第一学期期末试卷
- 公司客户服务应急预案
- 三年级道德与法制上学期期末考试质量分析集合3篇
- 水工-建筑物课件
- 装修增减项单模板
- 张克非《公共关系学》(修订版)笔记和课后习题详解
- 湖北高校毕业生就业协议书填写格式说明样表
- 江西省商品混凝土企业名录
- 毒理学第三章化学毒物在体内的生物转运和生物转化
- 企业年会活动抽奖滚动抽奖经典创意高端模板课件
- 技术资料检查评分表
- 轴联轴器离合器解析课件
评论
0/150
提交评论