内蒙集宁二中2025届数学高一上期末统考试题含解析_第1页
内蒙集宁二中2025届数学高一上期末统考试题含解析_第2页
内蒙集宁二中2025届数学高一上期末统考试题含解析_第3页
内蒙集宁二中2025届数学高一上期末统考试题含解析_第4页
内蒙集宁二中2025届数学高一上期末统考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙集宁二中2025届数学高一上期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为()A. B.C. D.2.若,且则与的夹角为()A. B.C. D.3.已知集合A=,B=,那么集合A∩B等于()A. B.C. D.4.甲、乙两人破译一份电报,甲能独立破译的概率为0.3,乙能独立破译的概率为0.4,且两人是否破译成功互不影响,则两人都成功破译的概率为()A.0.5 B.0.7C.0.12 D.0.885.2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间t(单位:年)的衰变规律满足(表示碳14原有的质量).经过测定,良渚古城遗址文物样本中碳14的质量是原来的至,据此推测良渚古城存在的时期距今约()年到5730年之间?(参考数据:,)A.4011 B.3438C.2865 D.22926.已知函数为R上的偶函数,若对于时,都有,且当时,,则等于()A.1 B.-1C. D.7.若函数f(x)=sin(2x+φ)为R上的偶函数,则φ的值可以是()A. B.C. D.8.已知x>0,y>0,且x+2y=2,则xy()A.有最大值为1 B.有最小值为1C.有最大值为 D.有最小值为9.下列函数中,图象关于坐标原点对称的是()A.y=x B.C.y=x D.10.借助信息技术画出函数和(a为实数)的图象,当时图象如图所示,则函数的零点个数为()A.3 B.2C.1 D.0二、填空题:本大题共6小题,每小题5分,共30分。11.下列四个命题:①函数与的图象相同;②函数的最小正周期是;③函数的图象关于直线对称;④函数在区间上是减函数其中正确的命题是__________(填写所有正确命题的序号)12.若存在常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数的取值范围是______13.不等式的解为______14.已知函数有两个零点,则___________15.设函数是以4为周期的周期函数,且时,,则__________16._____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的奇函数,当时有.(1)求函数的解析式;(2)判断函数在上的单调性,并用定义证明.18.已知集合.(1)若是空集,求取值范围;(2)若中只有一个元素,求的值,并把这个元素写出来.19.已知向量函数(1)若时,不等式恒成立,求实数的取值范围;(2)当时,讨论函数的零点情况.20.如图,四棱锥的底面是正方形,,点在棱上.(Ⅰ)求证:;(Ⅱ)当且为的中点时,求与平面所成的角的大小.21.已知点,直线:.(Ⅰ)求过点且与直线垂直的直线方程;(Ⅱ)直线为过点且和直线平行的直线,求平行直线,的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先由三视图得出该几何体的直观图,结合题意求解即可.【详解】由三视图可知其直观图,该几何体为四棱锥P-ABCD,最长的棱为PA,则最长的棱长为,故选A【点睛】本题主要考查几何体的三视图,属于基础题型.2、C【解析】因为,设与的夹角为,,则,故选C考点:数量积表示两个向量的夹角3、C【解析】根据集合的交运算即可求解.【详解】因为A=,B=,所以故选:C4、C【解析】根据相互独立事件的概率乘法公式,即可求解.【详解】由题意,甲、乙分别能独立破译的概率为和,且两人是否破译成功互不影响,则这份电报两人都成功破译的概率为.C.5、A【解析】由已知条件可得,两边同时取以2为底的对数,化简计算可求得答案【详解】因为碳14的质量是原来的至,所以,两边同时取以2为底的对数得,所以,所以,则推测良渚古城存在的时期距今约在4011年到5730年之间.故选:A.6、A【解析】由已知确定函数的递推式,利用递推式与奇偶性计算即可【详解】当时,,则,所以当时,,所以又是偶函数,,所以故选:A7、C【解析】根据三角函数的奇偶性,即可得出φ的值【详解】函数f(x)=sin(2x+φ)为R上的偶函数,则φ=+kπ,k∈Z;所以φ的值可以是.故选C.【点睛】本题考查了三角函数的图象与性质的应用问题,属于基础题8、C【解析】利用基本不等式的性质进行求解即可【详解】,,且,(1),当且仅当,即,时,取等号,故的最大值是:,故选:【点睛】本题主要考查基本不等式的应用,注意基本不等式成立的条件9、B【解析】根据图象关于坐标原点对称的函数是奇函数,结合奇函数的性质进行判断即可.【详解】因为图象关于坐标原点对称的函数是奇函数,所以有:A:函数y=xB:设f(x)=x3,因为C:设g(x)=x,因为g(-x)=D:因为当x=0时,y=1,所以该函数的图象不过原点,因此不是奇函数,不符合题意,故选:B10、B【解析】由转化为与的图象交点个数来确定正确选项.【详解】令,,所以函数的零点个数即与的图象交点个数,结合图象可知与的图象有个交点,所以函数有个零点.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解析】首先需要对命题逐个分析,利用三角函数的相关性质求得结果.【详解】对于①,,所以两个函数的图象相同,所以①对;对于②,,所以最小正周期是,所以②对;对于③,因为,所以,,,因为,所以函数的图象不关于直线对称,所以③错,对于④,,当时,,所以函数在区间上是减函数,所以④对,故答案为①②④【点睛】该题考查的是有关三角函数的性质,涉及到的知识点有利用诱导公式化简函数解析式,余弦函数的周期,正弦型函数的单调性,属于简单题目.12、【解析】由已知可得、恒成立,可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以,当时,可得对任意的恒成立,则,即,当时,可得对恒成立,令,则有对恒成立,所以或,解得或,综上所述,实数的取值范围是.故答案为:.13、【解析】根据幂函数的性质,分类讨论即可【详解】将不等式转化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此时无解;综上,不等式的解集为:故答案为:14、2【解析】根据函数零点的定义可得,进而有,整理计算即可得出结果.【详解】因为函数又两个零点,所以,即,得,即,所以.故答案为:215、##0.5【解析】利用周期和分段函数的性质可得答案.【详解】,.故答案为:.16、【解析】利用三角函数公式化简,即可求出结果.【详解】,故答案为:.【点睛】本题主要考查运用三角函数公式化简求值,倍角公式的应用,考查运算求解能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】(1)当时,则,可得,进而得到函数的解析式;(2)利用函数的单调性的定义,即可证得函数的单调性,得到结论.【详解】(1)由题意,当时,则,可得,因为函数为奇函数,所以,所以函数的解析式为.(2)函数在单调递增函数.证明:设,则因为,所以所以,即故在为单调递增函数【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,以及函数的单调性的判定与证明,其中解答中熟记函数的单调性的定义,以及熟练应用的函数的奇偶性是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1)(2)时,;时,【解析】(1)有由是空集,可得方程无解,故,由此解得的取值范围;(2)若中只有一个元素,则或,求出的值,再把的值代入方程,解得的值,即为所求.试题解析:(1)要使为空集,方程应无实根,应满足解得.(2)当时,方程为一次方程,有一解;当,方程为一元二次方程,使集合只有一个元素的条件是,解得,.∴时,,元素为:;时,.元素为:19、(1);(2)见解析【解析】(1)由题意得,结合不等式恒成立,建立m的不等式组,从而得到实数的取值范围;(2))令得:即,对m分类讨论即可得到函数的零点情况.【详解】(1)由题意得,,当时,∴,又恒成立,则解得:(2)令得:得:,则.由图知:当或,即或时,0个零点;当或,即或时,1个零点;当或,即或时,2个零点;当,即时,3个零点.综上:或时,0个零点;或时,1个零点;或时,2个零点;时,3个零点.【点睛】本题考查三角函数的图像与性质的应用,三角不等式恒成立问题,函数的零点问题及三角函数的化简,属于中档题.20、(1)见解析(2)【解析】(Ⅰ)欲证平面AEC⊥平面PDB,根据面面垂直的判定定理可知在平面AEC内一直线与平面PDB垂直,而根据题意可得AC⊥平面PDB;(Ⅱ)设AC∩BD=O,连接OE,根据线面所成角的定义可知∠AEO为AE与平面PDB所的角,在Rt△AOE中求出此角即可【详解】(1)证明:∵底面ABCD是正方形∴AC⊥BD又PD⊥底面ABCDPD⊥AC所以AC⊥面PDB因此面AEC⊥面PDB(2)解:设AC与BD交于O点,连接EO则易得∠AEO为AE与面PDB所成的角∵E、O为中点∴EO=PD∴EO⊥AO∴在Rt△AEO中OE=PD=AB=AO∴∠AEO=45°即AE与面PDB所成角的大小为45°本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题21、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题知直线的斜率为,则所求直线的斜率为,设方程为,代点入直线方程,解得,即可得直线方程;(Ⅱ)因为直线过点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论