2025届上海市徐汇中学数学高一上期末达标检测模拟试题含解析_第1页
2025届上海市徐汇中学数学高一上期末达标检测模拟试题含解析_第2页
2025届上海市徐汇中学数学高一上期末达标检测模拟试题含解析_第3页
2025届上海市徐汇中学数学高一上期末达标检测模拟试题含解析_第4页
2025届上海市徐汇中学数学高一上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市徐汇中学数学高一上期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.B.C.D.2.设集合A={1,3,5},B={1,2,3},则A∪B=()A. B.C.3, D.2,3,3.奇函数在内单调递减且,则不等式的解集为()A. B.C. D.4.圆O1:x2+y2﹣6x+4y+12=0与圆O2:x2+y2﹣14x﹣2y+14=0的位置关系是()A.相离 B.内含C.外切 D.内切5.函数的定义域为()A B.C. D.6.若用二分法逐次计算函数在区间内的一个零点附近的函数值,所得数据如下:0.510.750.6250.562510.4620.155则方程的一个近似根(精度为0.1)为()A.0.56 B.0.57C.0.65 D.0.87.三个数20.3,0.32,log0.32的大小顺序是A.0.32<log0.32<20.3 B.0.32<20.3<log0.32C.log0.32<20.3<0.32 D.log0.32<0.32<20.38.命题“∃x>0,x2=x﹣1”的否定是()A.∃x>0,x2≠x﹣1 B.∀x≤0,x2=x﹣1C.∃x≤0,x2=x﹣1 D.∀x>0,x2≠x﹣19.袋中装有5个小球,颜色分别是红色、黄色、白色、黑色和紫色.现从袋中随机抽取3个小球,设每个小球被抽到的机会均相等,则抽到白球或黑球的概率为A. B.C. D.10.已知函数在区间上单调递增,则实数a的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆心角为的扇形的面积为,则该扇形的半径为____.12.如图所示,某农科院有一块直角梯形试验田,其中.某研究小组计则在该试验田中截取一块矩形区域试种新品种的西红柿,点E在边上,则该矩形区域的面积最大值为___________.13.已知函数,对于任意都有,则的值为______________.14.函数是偶函数,且它的值域为,则__________15.已知是第四象限角,,则______16.已知函数有两个零点,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,AB是圆柱OO1的一条母线,BC是底面的一条直径,D是圆О上一点,且AB=BC=5,CD=3(1)求该圆柱的侧面积;(2)求点B到平面ACD的距离18.已知函数(1)求的最大值,并写出取得最大值时自变量的集合;(2)把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,求在上的单调递增区间.19.已知是同一平面内的三个向量,其中(1)若,且,求:的坐标(2)若,且与垂直,求与夹角20.已知全集,集合,集合(1)若集合中只有一个元素,求的值;(2)若,求21.已知向量,,,,函数,的最小正周期为(1)求的单调增区间;(2)方程;在上有且只有一个解,求实数n的取值范围;(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据所给数据,求出样本中心点,把样本中心点代入所给四个选项中验证,即可得答案【详解】解:由已知可得,所以这组数据的样本中心点为,因样本中心必在回归直线上,所以把样本中心点代入四个选项中验证,可得只有成立,故选:A.2、D【解析】直接利用集合运算法则得出结果【详解】因A=(1,3,5},B={1,2,3},所以则A∪B=2,3,,故选D【点睛】本题考查集合运算,注意集合中元素的的互异性,无序性3、A【解析】由已知可作出函数的大致图象,结合图象可得到答案.【详解】因为函数在上单调递减,,所以当时,,当,,又因为是奇函数,图象关于原点对称,所以在上单调递减,,所以当时,,当时,,大致图象如下,由得或,解得,或,或,故选:A.【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出的大致图象,考查了学生分析问题、解决问题的能力.4、D【解析】先求出两圆的圆心距,再比较圆心距和两个半径的关系得解.【详解】由题得圆O1:它表示圆心为O1(3,-2)半径为1的圆;圆O2:,它表示圆心为O2(7,1),半径为6的圆.两圆圆心距为,所以两圆内切.故选:D【点睛】本题主要考查两圆位置关系的判定,意在考查学生对这些知识的理解掌握水平.5、D【解析】由函数解析式可得关于自变量的不等式组,其解集为函数的定义域.【详解】由题设可得:,故,故选:D.6、B【解析】利用零点存在性定理和精确度要求即可得解.【详解】由表格知在区间两端点处的函数值符号相反,且区间长度不超过0.1,符合精度要求,因此,近似值可取此区间上任一数故选:B7、D【解析】由已知得:,,,所以.故选D.考点:指数函数和对数函数的图像和性质.8、D【解析】根据特称命题的否定是全称命题的知识选出正确结论.【详解】因为特称命题的否定是全称命题,注意到要否定结论,所以:命题“∃x>0,x2=x﹣1”的否定是:∀x>0,x2≠x﹣1故选:D【点睛】本小题主要考查全称命题与特称命题,考查特称命题的否定,属于基础题.9、D【解析】分析:先求对立事件的概率:黑白都没有的概率,再用1减得结果.详解:从袋中球随机摸个,有,黑白都没有只有种,则抽到白或黑概率为选点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.10、D【解析】根据二次函数的单调性进行求解即可.【详解】当时,函数是实数集上的减函数,不符合题意;当时,二次函数的对称轴为:,由题意有解得故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】由扇形的面积公式列方程即可求解.【详解】扇形的面积,即,解得:.故答案为:.12、【解析】设,求得矩形面积的表达式,结合基本不等式求得最大值.【详解】设,,,,所以矩形的面积,当且仅当时等号成立.故选:13、【解析】由条件得到函数的对称性,从而得到结果【详解】∵f=f,∴x=是函数f(x)=2sin(ωx+φ)的一条对称轴.∴f=±2.【点睛】本题考查了正弦型三角函数的对称性,注意对称轴必过最高点或最低点,属于基础题.14、【解析】展开,由是偶函数得到或,分别讨论和时的值域,确定,的值,求出结果.【详解】解:为偶函数,所以,即或,当时,值域不符合,所以不成立;当时,,若值域为,则,所以.故答案为:.15、【解析】利用同角三角函数的基本关系求出的值,在利用诱导公式可求得结果.【详解】因为是第四象限角,,则,所以,.故答案为:.16、2【解析】根据函数零点的定义可得,进而有,整理计算即可得出结果.【详解】因为函数又两个零点,所以,即,得,即,所以.故答案为:2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用圆柱的侧面积公式计算出侧面积.(2)利用等体积法求得到平面的距离.【小问1详解】圆柱的底面半径为,高为,所以圆柱的侧面积为.【小问2详解】是圆的直径,所以,,.根据圆柱的几何性质可知,由于,所以平面,所以.,,设到平面的距离为,则,即.18、(1)的最大值,(2)【解析】(1)根据的范围可得的范围,可得的最大值及取得最大值时自变量的集合;(2)由图象平移规律可得,结合的范围和正弦曲线的单调性可得答案.【小问1详解】因为,所以,所以,当即时的最大值,所以取得最大值时自变量的集合是.【小问2详解】因为把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,所以.因为,所以.因为正弦曲线在上的单调递增区间是,所以,所以.所以在上的单调递增区间是.19、(1)或;(2)【解析】解:(1)设(2)代入①中,20、(1)(2)【解析】(1)对应一元二次方程两根相等,.(2)先由已知确定、的值,再确定集合、的元素即可.【小问1详解】因为集合中只有一个元素,所以,【小问2详解】当时,,,,此时,,21、(1),(2)或(3)存在,且m取值范围为【解析】(1)函数,的最小正周期为.可得,即可求解的单调增区间(2)根据x在上求解的值域,即可求解实数n的取值范围;(3)由题意,求解最小值,利用换元法求解的最小值,即可求解m的范围【详解】(1)函数f(x)•1=2sin2(ωx)cos(2ωx)﹣1=sin(2ωx)cos(2ωx)=2sin(2ωx)∵f(x)的最小正周期为π.ω>0∴,∴ω=1那么f(x)的解析式f(x)=2sin(2x)令2x,k∈Z得:x∴f(x)的单调增区间为[,],k∈Z(2)方程f(x)﹣2n+1=0;在[0,]上有且只有一个解,转化为函数y=f(x)+1与函数y=2n只有一个交点∵x在[0,]上,∴(2x)那么函数y=f(x)+1=2sin(2x)+1的值域为[,3],结合图象可知函数y=f(x)+1与函数y=2n只有一个交点那么2n<2或2n=3,可得或n=(3)由(1)可知f(x)=2sin(2x)∴f(x2)min=﹣2实数m满足对任意x1∈[﹣1,1],都存在x2∈R,使得m()+1>f(x2)成立即m()+1>﹣2成立令ym()+1设t,那么()2+2=t2+2∵x1∈[﹣1,1],∴t∈[,],可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论