2025届-度第一期海南省灵山中学九年级数学第一学期开学检测试题【含答案】_第1页
2025届-度第一期海南省灵山中学九年级数学第一学期开学检测试题【含答案】_第2页
2025届-度第一期海南省灵山中学九年级数学第一学期开学检测试题【含答案】_第3页
2025届-度第一期海南省灵山中学九年级数学第一学期开学检测试题【含答案】_第4页
2025届-度第一期海南省灵山中学九年级数学第一学期开学检测试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2025届—度第一期海南省灵山中学九年级数学第一学期开学检测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)将一次函数y=4x的图象向上平移3个单位长度,得到图象对应的函数解析式为()A.y=4x-3 B.y=2x-6 C.y=4x+3 D.y=-x-32、(4分)如图,分别是的边上的点,将四边形沿翻折,得到交于点则的周长为()A. B. C. D.3、(4分)某市从不同学校随机抽取100名初中生对“使用数学教辅用书的册数”进行调查,统计结果如下:册数0123人数10203040关于这组数据,下列说法正确的是()A.众数是2册 B.中位数是2册C.平均数是3册 D.方差是1.54、(4分)已知,下列不等式中错误的是()A. B. C. D.5、(4分)如图,直线和直线相交于点,则不等式的解集为()A. B. C. D.6、(4分)甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是s=5,s=12,则甲、乙两个同学的数学成绩比较稳定的是().A.甲 B.乙 C.甲和乙一样 D.无法确定7、(4分)若,则下列变形错误的是()A. B. C. D.8、(4分)已知:如果二次根式是整数,那么正整数n的最小值是()A.1 B.4 C.7 D.28二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在正方形ABCD中,E在AB上,BE=2,AE=1,P是BD上的动点,则PE和PA的长度之和最小值为___________.10、(4分)在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.11、(4分)已知反比例函数的图象经过点(1,-2),则k=_________.12、(4分)如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F分别为AO、AD的中点,则EF的长是_____.13、(4分)在平面直角坐标系中有两点和点.则这两点之间的距离是________.三、解答题(本大题共5个小题,共48分)14、(12分)已知在中,是的中点,,垂足为,交于点,且.(1)求的度数;(2)若,,求的长.15、(8分)周末,小明、小刚两人同时各自从家沿直线匀速步行到科技馆参加科技创新活动,小明家、小刚家、科技馆在一条直线上.已知小明到达科技馆花了20分钟.设两人出发(分钟)后,小明离小刚家的距离为(米),与的函数关系如图所示.(1)小明的速度为米/分,,小明家离科技馆的距离为米;(2)已知小刚的步行速度是40米/分,设小刚步行时与家的距离为(米),请求出与之间的函数关系式,并在图中画出(米)与(分钟)之间的函数关系图象;(3)小刚出发几分钟后两人在途中相遇?16、(8分)如图,两个全等的Rt△AOB、Rt△OCD分别位于第二、第一象限,∠ABO=∠ODC=90°,OB、OD在x轴上,且∠AOB=30°,AB=1.(1)如图1中Rt△OCD可以看作由Rt△AOB先绕点O顺时针旋转度,再绕斜边中点旋转度得到的,C点的坐标是;(2)是否存在点E,使得以C、O、D、E为顶点的四边形是平行四边形,若存在,写出E点的坐标;若不存在请说明理由.(3)如图2将△AOC沿AC翻折,O点的对应点落在P点处,求P点的坐标.17、(10分)甲、乙两名队员参加射击训练,成绩分别被作成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲771.2乙78(1)请计算甲的平均成绩,乙的训练成绩的中位数和方差;(列式解答)(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?18、(10分)已知,AC是□ABCD的对角线,BM⊥AC,DN⊥AC,垂足分别是M、N.求证:四边形BMDN是平行四边形.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,已知∠EAD=30°,△ADE绕点A旋转50°后能与△ABC重合,则∠BAE=_________°.20、(4分)如图,每个小正方形的边长为1,在△ABC中,点A,B,C均在格点上,点D为AB的中点,则线段CD的长为____________.21、(4分)如图,在ABCD中,已知AB=9㎝,AD=6㎝,BE平分∠ABC交DC边于点E,则DE等于_____㎝.22、(4分)化简:=_______________.23、(4分)分解因式:=___________________.二、解答题(本大题共3个小题,共30分)24、(8分)因式分解:x2y﹣2xy2+y1.25、(10分)(1)|﹣3|+2sin45°﹣+(﹣)﹣1(2)()÷26、(12分)如图,已知直线与交轴于点,,分别交轴于点,,,的表达式分别为,.(1)求的周长;(2)求时,的取值范围.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

根据一次函数的平移特点即可求解.【详解】∵将一次函数y=4x的图象向上平移3个单位长度,∴得到图象对应的函数解析式为y=4x+3故选C.此题主要考查一次函数的图像,解题的关键是熟知一次函数的平移特点.2、C【解析】

根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等边三角形,∴EG=FG=EF=4,∴△GEF的周长=4×3=12,故选:C.本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定与性质等知识;熟练掌握翻折变换的性质是解决问题的关键.3、B【解析】

根据方差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.【详解】解:A、众数是3册,结论错误,故A不符合题意;

B、中位数是2册,结论正确,故B符合题意;

C、平均数是(0×10+1×20+2×30+3×40)÷100=2册,结论错误,故C不符合题意;

D、方差=×[10×(0-2)2+20×(1-2)2+30×(2-2)2+40×(3-2)2]=1,结论错误,故D不符合题意.

故选:B.本题考查方差、平均数、中位数及众数,属于基础题,掌握各部分的定义及计算方法是解题的关键.4、D【解析】

不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变.【详解】解:∵a<b,∴3a<3b,A选项正确;a+5<b+5,B选项正确;a-5<b-5,C选项正确;-3a>-3b,D选项错误;故选:D.本题主要考查不等式的性质,主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5、C【解析】

写出直线y=kx(k≠0)在直线y=mx+n(m≠0)上方部分的x的取值范围即可.【详解】解:由图可知,不等式kx≥mx+n的解集为x≥2;故选:C.本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.6、A【解析】

根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,∴S甲2<S乙2,∴成绩比较稳定的是甲;故选A.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、D【解析】

根据两内项之积等于两外项之积对各选项分析判断即可得解【详解】解:由得3a=2b,A.由可得:3a=2b,本选项正确;B.由可得:3a=2b,本选项正确;C.,可知本选项正确;D.,由前面可知本选项错误。故选:D本题考查了比例的性质,熟练掌握内项之积等于外项之积是解题的关键.8、C【解析】

先将化为最简二次根式,然后根据是整数可得出n的最小值.【详解】=2,又∵是整数,∴n的最小值为1.故选C.此题考查了二次根式的知识,解答本题的关键是将化为最简二次根式,难度一般.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

利用轴对称最短路径求法,得出A点关于BD的对称点为C点,再利用连接EC交BD于点P即为最短路径位置,利用勾股定理求出即可.【详解】解:连接AC,EC,EC与BD交于点P,此时PA+PE的最小,即PA+PE就是CE的长度

∵正方形ABCD中,BE=2,AE=1,

∴BC=AB=3,

∴CE===,故答案为.本题考查利用轴对称求最短路径问题以及正方形的性质和勾股定理,利用正方形性质得出A,C关于BD对称是解题关键.10、2+【解析】

试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,PA=2,根据勾股定理得:PE=1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=∵⊙P的圆心是(2,a),∴a=PD+DC=2+.本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.11、-1【解析】

由k=xy即可求得k值.【详解】解:将(1,-1)代入中,k=xy=1×(-1)=-1故答案为:-1.本题考查求反比例函数的系数.12、1.【解析】

根据矩形的性质得出AO=OC,DO=BO,AC=BD,求出DO=CO=AO=BO,求出△AOB是等边三角形,根据等边三角形的性质得出AO=OB=DO=10,根据三角形的中位线定理求出即可.【详解】∵四边形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分别为AO、AD的中点,∴EF=DO==1,故答案为:1.本题考查了矩形的性质,等边三角形的判定与性质,三角形的中位线等知识.矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.13、【解析】

先根据A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.【详解】如图,∵A(5,0)和B(0,4),∴OA=5,OB=4,∴AB=,即这两点之间的距离是.故答案为.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.三、解答题(本大题共5个小题,共48分)14、(1)90°(1)1.4【解析】

(1)连接CE,根据线段垂直平分线的性质转化线段BE到△AEC中,利用勾股定理的逆定理可求∠A度数;(1)设AE=x,则AC可用x表示,在Rt△ABC中利用勾股定理得到关于x的方程求解AE值.【详解】(1)连接CE,∵D是BC的中点,DE⊥BC,∴CE=BE.∵BE1−AE1=AC1,∴AE1+AC1=CE1.∴△AEC是直角三角形,∠A=90°;(1)在Rt△BDE中,BE==2.所以CE=BE=2.设AE=x,则在Rt△AEC中,AC1=CE1−AE1,所以AC1=12−x1.∵BD=4,∴BC=1BD=3.在Rt△ABC中,根据BC1=AB1+AC1,即64=(2+x)1+12−x1,解得x=1.4.即AE=1.4.本题主要考查了勾股定理及其逆定理,解题的关键是利用勾股定理求解线段长度,选择直角三角形借助勾股定理构造方程是解这类问题通用方法.15、(1)60;960;1200;(2)=40(0≤≤24);见解析;(3)12分钟.【解析】

(1)根据图象可求得小明的速度v1,便可得出a的值以及小明家离科技馆的距离;(2)根据小刚步行时的速度和小刚家离科技馆的距离,可求出解析式并画出图象;(3)两人离科技馆的距离相等时相遇,列出方程可求出答案.【详解】解:(1)根据图象可知小明4分钟走过的路程为240m,列出解析式:s1=v1x,代入可得240=4v1,解得v1=60米/分钟,即小明速度是60米/分钟,根据图象可知小明又走了16分钟到达科技馆,可得a=16v1,代入v1,可得a=960m,据题意小明到科技馆共用20分钟,可得出小明家离科技馆的距离s2=v1x2,解得:s2=60×20=1200m,故小明家离科技馆的距离为1200m;故答案为:60;960;1200(2)列出解析式:y1=40x,由(1)可知小刚离科技馆的距离为a=960m,代入可得960=40x,解得:x=24分钟,作出图象如下:(3)两人离科技馆的距离相等时相遇,当x≥4时,小明所走路程y与x的函数关系式为y=60x-240,则60x-240=40x,解得:x=12,即小刚出发12分钟后两人相遇.本题考查了一次函数的应用,有一定难度,解答本题的关键是仔细审题,同学们注意培养自己的读图能力.16、(1)90,180,(1,);(2)存在,E的坐标为(0,)或(2,),或(0,﹣);(3)P(1﹣,1+).【解析】

(1)先求出OB,再由旋转求出OD,CD,即可得出结论;(2)先求出D的坐标,再分三种情况,利用平行四边形的性质即可得出结论;(3)先判断出四边形OAPC是正方形,再利用中点坐标公式即可得出结论【详解】解:(1)Rt△OCD可以看作由Rt△AOB先绕点O顺时针旋转90°,再绕斜边中点旋转180°得到的,在Rt△AOB中,∠AOB=30°,AB=1,∴OB=,由旋转知,OD=AB=1,CD=OB=,∴C(1,),故答案为90,180,(1,);(2)存在,理由:如图1,由(1)知,C(1,),∴D(1,0),∵O(0,0),∵以C、O、D、E为顶点的四边形是平行四边形,∴①当OC为对角线时,∴CE∥OD,CE=OD=1,点E和点B'重合,∴E(0,),②当CD为对角线时,CE∥OD,CE=OD=1,∴E(2,),当OD为对角线时,OE'∥CD,OE'=CD,∴E(0,﹣),即:满足条件的E的坐标为(0,)或(2,),或(0,﹣);(3)由旋转知,OA=OC,∠OCD=∠AOB=30°,∴∠COD=90°﹣∠OCD=60°,∴∠AOC=90°,由折叠知,AP=OA,PC=OC,∴四边形OAPC是正方形,设P(m,n)∵A(﹣,1),C(1,),O(0,0),∴(m+0)=(1﹣),(n+0)=(1+),∴m=1﹣,n=1+,∴P(1﹣,1+).此题考查翻折变换(折叠问题),平行四边形的性质和旋转的性质,解题关键在于掌握各性质和做辅助线17、(1)甲的平均成绩为7环,乙射击成绩的中位数为7.5环,方差为;(2)详见解析.【解析】

(1)利用平均数的计算公式直接计算平均成绩;将乙的成绩从小到大重新排列,根据中位数的定义可求出中位数;根据乙的平均数,利用方差的公式计算即可;(2)比较平均数和方差,若平均数一样,选派方差小的队员.【详解】解:(1)甲的平均成绩(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数(环),其方差(2)答:从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.本题主要考查了数据的处理与分析,重点需要掌握平均数、众数、中位数和方差的求法.18、证明见解析【解析】

由题意即可推出DN∥BM,通过求证△ADN≌△CBM即可推出DN=BM,便知四边形BMDN是平行四边形.【详解】证明:∵BM⊥AC,DN⊥AC,

∴∠DNA=∠BMC=90°,

∴DN∥BM,

∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∴∠DAN=∠BCM,

∴△ADN≌△CBM,

∴DN=BM,

∴四边形BMDN是平行四边形.本题主要考查平行四边形的判定与性质、全等三角形的判定与性质,熟悉相关性质是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、20【解析】

利用旋转的性质得出∠DAB=50°,进而得出∠BAE的度数.【详解】解:∵∠EAD=30°,△ADE绕着点A旋转50°后能与△ABC重合,∴∠DAB=50°,则∠BAE=∠DAB-∠DAE=50°-30°=20°.故答案为:20.此题主要考查了旋转的性质,得出旋转角∠DAB的度数是解题关键.20、【解析】

根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:根据勾股定理,AB=,

BC=,

AC=,

∵AC2+BC2=AB2=26,

∴△ABC是直角三角形,

∵点D为AB的中点,

∴CD=AB=×=.

故答案为.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论