2025届山东省昌乐博闻学校数学高一上期末考试试题含解析_第1页
2025届山东省昌乐博闻学校数学高一上期末考试试题含解析_第2页
2025届山东省昌乐博闻学校数学高一上期末考试试题含解析_第3页
2025届山东省昌乐博闻学校数学高一上期末考试试题含解析_第4页
2025届山东省昌乐博闻学校数学高一上期末考试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省昌乐博闻学校数学高一上期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的图像是端点为且分别过和两点的两条射线,如图所示,则的解集为A.B.C.D.2.设函数的定义域为.则“在上严格递增”是“在上严格递增”的()条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要3.下列函数中最小正周期为的是A. B.C. D.4.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中酒精含量上升到.如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少要经过()小时才能驾驶.(参考数据:,)A.1 B.3C.5 D.75.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行6.若,且则与的夹角为()A. B.C. D.7.已知函数,若存在不相等的实数a,b,c,d满足,则的取值范围为()A B.C. D.8.函数的图像恒过定点,点在幂函数的图像上,则()A.16 B.8C.4 D.29.函数图像大致为()A. B.C. D.10.已知幂函数f(x)=xa的图象经过点P(2,),则函数y=f(x2)﹣2f(x)的最小值等于()A. B.C.1 D.﹣1二、填空题:本大题共6小题,每小题5分,共30分。11.不等式x2-5x+6≤0的解集为______.12.设、、为的三个内角,则下列关系式中恒成立的是__________(填写序号)①;②;③13.用二分法研究函数f(x)=x3+3x-1的零点时,第一次经计算,可得其中一个零点x0∈(0,1),那么经过下一次计算可得x0∈___________(填区间).14.已知扇形的弧长为2cm,圆心角为1rad,则扇形的面积为______.15.若圆锥的侧面展开图是圆心角为的扇形,则该圆锥的侧面积与底面积之比为___________.16.函数是幂函数,且当时,是减函数,则实数=_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是偶函数(其中a,b是常数),且它的值域为(1)求的解析式;(2)若函数是定义在R上的奇函数,且时,,而函数满足对任意的,有恒成立,求m的取值范围18.设函数.(1)求的单调增区间;(2)求在上的最大值与最小值.19.解关于的不等式.20.已知函数(0<ω<6)的图象的一个对称中心为(1)求f(x)的最小正周期;(2)求函数f(x)的单调递增区间;(3)求f(x)在区间上的最大值和最小值21.已知函数(1)求不等式的解集;(2)将图像上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图像向右平移个单位长度,得到函数的图像.求在区间上的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】作出g(x)=图象,它与f(x)的图象交点为和,由图象可得2、A【解析】利用特例法、函数单调性的定义结合充分条件、必要条件的定义判断可得出合适的选项.【详解】若函数在上严格递增,对任意的、且,,由不等式的性质可得,即,所以,在上严格递增,所以,“在上严格递增”“在上严格递增”;若在上严格递增,不妨取,则函数在上严格递增,但函数在上严格递减,所以,“在上严格递增”“在上严格递增”.因此,“在上严格递增”是“在上严格递增”的充分不必要条件.故选:A.3、A【解析】利用周期公式对四个选项中周期进行求解【详解】A项中Tπ,B项中T,C项中T,D项中T,故选A【点睛】本题主要考查了三角函数周期公式的应用.对于带绝对值的函数解析式,可结合函数的图象来判断函数的周期4、C【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.详解】设经过个小时才能驾驶,则,即由于在定义域上单调递减,∴∴他至少经过5小时才能驾驶.故选:C5、C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.6、C【解析】因为,设与的夹角为,,则,故选C考点:数量积表示两个向量的夹角7、C【解析】将问题转化为与图象的四个交点横坐标之和的范围,应用数形结合思想,结合对数函数的性质求目标式的范围.【详解】由题设,将问题转化为与的图象有四个交点,,则在上递减且值域为;在上递增且值域为;在上递减且值域为,在上递增且值域为;的图象如下:所以时,与的图象有四个交点,不妨假设,由图及函数性质知:,易知:,,所以.故选:C8、A【解析】利用恒等式可得定点P,代入幂函数可得解析式,然后可得.【详解】当时,,所以函数的图像恒过定点记,则有,解得所以.故选:A9、B【解析】先求出函数的定义域,判断出函数为奇函数,排除选项D,由当时,,排除A,C选项,得出答案.【详解】解析:定义域为,,所以为奇函数,可排除D选项,当时,,,由此,排除A,C选项,故选:B10、D【解析】先由已知条件求得,再利用配方法求二次函数的最值即可得解.【详解】解:已知幂函数f(x)=xa的图象经过点P(2,),则,即,所以,所以,所以y=f(x2)﹣2f(x),当且仅当,即时取等号,即函数y=f(x2)﹣2f(x)的最小值等于,故选:D.【点睛】本题考查了幂函数解析式的求法,重点考查了二次函数求最值问题,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据二次函数的特点即可求解.【详解】由x2-5x+6≤0,可以看作抛物线,抛物线开口向上,与x轴的交点为,∴,即原不等式的解集为.12、②、③【解析】因为是的内角,故,,从而,,,故选②、③.点睛:三角形中各角的三角函数关系,应注意利用这个结论.13、【解析】根据零点存在性定理判断零点所在区间.【详解】,,所以下一次计算可得.故答案为:14、2【解析】首先由扇形的弧长与圆心角求出扇形的半径,再根据扇形的面积公式计算可得;【详解】解:因为扇形的弧长为2cm,圆心角为1rad,所以扇形的半径cm,所以扇形的面积;故答案为:15、【解析】设圆锥的底面半径为r,母线长为l,根据圆锥的侧面展开图是圆心角为的扇形,有,即,然后分别求得侧面积和底面积即可.【详解】设圆锥的底面半径为r,母线长为l,由题意得:,即,所以其侧面积是,底面积是,所以该圆锥的侧面积与底面积之比为故答案为:16、-1【解析】根据幂函数的定义,令m2﹣m﹣1=1,求出m的值,再判断m是否满足幂函数当x∈(0,+∞)时为减函数即可【详解】解:∵幂函数,∴m2﹣m﹣1=1,解得m=2,或m=﹣1;又x∈(0,+∞)时,f(x)为减函数,∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;当m=﹣1时,m2+m﹣3=0,幂函数为y=x﹣3,满足题意;综上,m=﹣1,故答案为﹣1【点睛】本题考查了幂函数的定义与图像性质的应用问题,解题的关键是求出符合题意的m值三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由偶函数的定义结合题意可求出,再由函数的值域为可求出,从而可求出函数解析式,(2)由题意求出的解析式,判断出当时,,从而将问题转化为满足对任意的恒成立,设,则对恒成立,然后利用二次函数的性质求解【小问1详解】由题∵是偶函数,∴,∴∴或,又∵的值域为,∴,∴,∴或,∴;【小问2详解】若函数是定义在R上的奇函数,且时,,由(1)知,∴时,;时,;当时,,显然时,,若,则又满足对任意的,有恒成立,∴对任意的恒成立,即满足对任意的恒成立,即,设,则对恒成立,设,∵函数的图像开口向上,∴只需,∴,∴所求m的取值范围是.18、(1)(2)最大值为2,最小值为【解析】(1)利用三角恒等变换化简可得,根据正弦型函数的单调性计算即可得出结果.(2)由得,利用正弦函数的图像和性质计算即可得出结果.【小问1详解】令,得,所以的单调增区间为【小问2详解】由得,所以当,即时,取最大值2;当,即时,取最小值.19、答案见解析【解析】不等式等价于,再分,和三种情况讨论解不等式.【详解】原不等式可化为,即,①当,即时,;②当,即时,原不等式的解集为;③当,即时,.综上知:当时,原不等式的解集为;当时,原不等式的解集为;当时原不等式的解集为.20、(1);(2)[],k∈Z;(3)最大值为10,最小值为【解析】(1)先降幂化简原式,再利用对称中心求得ω,进而得周期;(2)利用正弦函数的单调区间列出不等式即可得解;(3)利用(2)的结论,确定所给区间的单调性,再得最值【详解】解:(1)=4sin(sincos-cossin)-1=2sin2-1-2sincos=-cosωx-sinωx=-2sin(ωx),∵是对称中心,∴-,得ω=2-12k,k∈Z,∵0<ω<6,∴k=0,ω=2,∴,其最小正周期为π;(2)由,得,∴f(x)的单调递增区间为:[],k∈Z,(3)由(2)可知,f(x)在[]递减,在[]递增,可知当x=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论