河南省安阳市安阳县一中2025届高二数学第一学期期末预测试题含解析_第1页
河南省安阳市安阳县一中2025届高二数学第一学期期末预测试题含解析_第2页
河南省安阳市安阳县一中2025届高二数学第一学期期末预测试题含解析_第3页
河南省安阳市安阳县一中2025届高二数学第一学期期末预测试题含解析_第4页
河南省安阳市安阳县一中2025届高二数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省安阳市安阳县一中2025届高二数学第一学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,,则的最小值为()A. B.C. D.2.设双曲线的方程为,过抛物线的焦点和点的直线为.若的一条渐近线与平行,另一条渐近线与垂直,则双曲线的方程为()A. B.C. D.3.若,则()A.1 B.2C.4 D.84.已知直线与椭圆:()相交于,两点,且线段的中点在直线:上,则椭圆的离心率为()A. B.C. D.5.已知函数在处取得极值,则()A. B.C. D.6.(5分)已知集合A={x|−2<x<4},集合B={x|(x−6)(x+1)<0},则A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|−2<x<−1} D.{x|−1<x<4}7.在平面直角坐标系中,椭圆的左、右焦点分别为,,过且垂直于轴的直线与交于,两点,与轴交于点,,则的离心率为()A. B.C. D.8.阿基米德(公元前287年~公元前212年)不仅是著名物理学家,也是著名的数学家,他利用“逼近法”得到的椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的对称轴为坐标轴,焦点在轴上,且椭圆的离心率为,面积为,则椭圆的标准方程为()A B.C. D.9.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件10.平行六面体的各棱长均相等,,,则异面直线与所成角的余弦值为()A. B.C. D.11.已知椭圆的左,右两个焦点分别为,若椭圆C上存在一点A,满足,则椭圆C的离心率的取值范围是()A. B.C. D.12.已知F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,当a为3和5时,点P的轨迹分别为()A.双曲线和一条直线 B.双曲线和一条射线C.双曲线的一支和一条直线 D.双曲线的一支和一条射线二、填空题:本题共4小题,每小题5分,共20分。13.展开式中的系数是___________.14.已知等差数列,的前n项和分别为,若,则=______15.已知直线与圆交于,两点,则的最小值为___________.16.已知圆和直线.(1)求直线l所经过的定点的坐标,并判断直线与圆的位置关系;(2)求当k取什么值,直线被圆截得的弦最短,并求这条最短弦的长.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线与双曲线相交于、两点.(1)当时,求;(2)是否存在实数,使以为直径的圆经过坐标原点?若存在,求出的值;若不存在,说明理由.18.(12分)已知数列的首项,,,.(1)证明:为等比数列;(2)求数列的前项和19.(12分)如图,在空间四边形中,分别是的中点,分别是上的点,满足.(1)求证:四点共面;(2)设与交于点,求证:三点共线.20.(12分)已知P,Q的坐标分别为,,直线PM,QM相交于点M,且它们的斜率之积是.设点M的轨迹为曲线C.(1)求曲线的方程;(2)设为坐标原点,圆的半径为1,直线:与圆相切,且与曲线交于不同的两点A,B.当,且满足时,求面积的取值范围.21.(12分)已知点A(1,2)在抛物线C∶上,过点A作两条直线分别交抛物线于点D,E,直线AD,AE的斜率分别为kAD,kAE,若直线DE过点P(-1,-2)(1)求抛物线C的方程;(2)求直线AD,AE的斜率之积.22.(10分)已知公差不为零的等差数列中,,且,,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】采用叠加法求出,由可得,结合对勾函数性质分析在或6取到最小值,代值运算即可求解.【详解】因为,所以,,,,式相加可得,所以,,当且仅当取到,但,,所以时,当时,,,所以的最小值为.故选:C2、D【解析】由抛物线的焦点可求得直线的方程为,即得直线的斜率为,再根据双曲线的渐近线的方程为,可得,即可求出,得到双曲线的方程【详解】由题可知,抛物线焦点为,所以直线的方程为,即直线的斜率为,又双曲线的渐近线的方程为,所以,,因为,解得故选:【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题3、D【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以.故选:D.4、A【解析】将直线代入椭圆方程整理得关于的方程,运用韦达定理,求出中点坐标,再由条件得到,再由,,的关系和离心率公式,即可求出离心率.【详解】解:将直线代入椭圆方程得,,即,设,,,,则,即中点的横坐标是,纵坐标是,由于线段的中点在直线上,则,又,则,,即椭圆的离心率为.故选:A5、B【解析】根据极值点处导函数为零可求解.【详解】因为,则,由题意可知.经检验满足题意故选:B6、D【解析】由(x−6)(x+1)<0,得−1<x<6,从而有B={x|−1<x<6},所以A∩B={x|−1<x<4},故选D7、B【解析】由题意结合几何性质可得为等腰三角形,且,所以,求出的长,结合椭圆的定义可得答案.【详解】如图,由题意轴,轴,则又为的中点,则为的中点,又,则为等腰三角形,且,所以将代入椭圆方程得,,即所以,则由椭圆的定义可得,即则椭圆的离心率故选:B8、C【解析】由题意,设出椭圆的标准方程为,然后根据椭圆的离心率以及椭圆面积列出关于的方程组,求解方程组即可得答案【详解】由题意,设椭圆的方程为,由椭圆的离心率为,面积为,∴,解得,∴椭圆的方程为,故选:C.9、A【解析】由三角函数的单调性直接判断是否能推出,反过来判断时,是否能推出.【详解】当时,利用正弦函数的单调性知;当时,或.综上可知“”是“”的充分不必要条件.故选:A【点睛】本题考查判断充分必要条件,三角函数性质,意在考查基本判断方法,属于基础题型.10、B【解析】利用基底向量表示出向量,,即可根据向量夹角公式求出【详解】如图所示:不妨设棱长为1,,,所以==,,,即,故异面直线与所成角的余弦值为故选:B注意事项:1.将答案写在答题卡上2.本卷共10小题,共80分.11、C【解析】根据题意可知当A为椭圆的上下顶点时,即可满足椭圆C上存在一点A,使得,由此可得,解此不等式可得答案.【详解】由椭圆的对称性可知,当A为椭圆的上下顶点时,最大,故只需即可满足题意,设O为坐标原点,则只需,即有,所以,解得,故选:C12、D【解析】由双曲线定义结合参数a的取值分类讨论而得.【详解】依题意得,当时,,且,点P的轨迹为双曲线的右支;当时,,故点P的轨迹为一条射线.故选D.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据二项展开式的通项公式,可知展开式中含的项,以及展开式中含的项,再根据组合数的运算即可求出结果.【详解】解:由题意可得,展开式中含的项为,而展开式中含的项为,所以的系数为.故答案为:.14、【解析】利用等差数列的性质和等差数列的前项和公式可得,再令即可求解.【详解】由等差数列的性质和等差数列的前项和公式可得:因为,故答案为:【点睛】关键点点睛:本题解题的关键是利用等差数列的性质可得,再转化为前项和公式的形式,代入的值即可.15、【解析】先求出直线经过的定点,再求出圆心到定点的距离,数形结合即得解.【详解】由题得,所以直线经过定点,圆的圆心为,半径为.圆心到定点的距离为,当时,取得最小值,且最小值为.故答案为:816、(1)直线过定点P(4,3),直线和圆总有两个不同交点(2)k=1,【解析】(1)把直线方程化为点斜式方程即可;(2)由圆的性质知,当直线与PC垂直时,弦长最短.【小问1详解】直线方程可化为,则直线过定点P(4,3),又圆C标准方程为,圆心为,半径为,而,所以点P在圆内,所以不论k取何值,直线和圆总有两个不同交点.【小问2详解】由圆的性质知,当直线与PC垂直时,弦长最短.,所以k=1时弦长最短.弦长为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不存在,理由见解析.【解析】(1)当时,将直线的方程与双曲线的方程联立,列出韦达定理,利用弦长公式可求得;(2)假设存在实数,使以为直径的圆经过坐标原点,设、,将直线与双曲线的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积的坐标运算结合韦达定理可得出,即可得出结论.【小问1详解】解:设点、,当时,联立,可得,,由韦达定理可得,,所以,.【小问2详解】解:假设存在实数,使以为直径的圆经过坐标原点,设、,联立得,由题意可得,解得且,由韦达定理可知,因为以为直径的圆经过坐标原点,则,所以,,整理可得,该方程无实解,故不存在.18、(1)证明见解析(2)【解析】(1)利用等比数列的定义即可证明.(2)利用错位相减法即可求解.【小问1详解】当时,,所以:数列是公比为3的等比数列;【小问2详解】由(1)知,数列是以3为首项,以3为公比的等比数列,所以:,所以:,,所以,①所以,②①②可得.19、(1)证明见解析(2)证明见解析【解析】【小问1详解】连接AC,分别是的中点,.在中,,所以四点共面.【小问2详解】,所以,又平面平面,同理平面,为平面与平面的一个公共点.又平面平面,即三点共线.20、(1)(2)【解析】【小问1详解】设点,则,整理得曲线的方程:【小问2详解】因为圆的半径为1,直线:与圆相切,则,,设,将代入得,,,,,所以,,因为,令,在上单调减,,所以21、(1)(2)【解析】(1)代入点即可求得抛物线方程;(2)联立方程后利用韦达定理求出,,,,然后代入即可求得斜率的积.【小问1详解】解:点A(1,2)在抛物线C∶上故【小问2详解】设直线方程为:联立方程,整理得:由题意及韦达定理可得:,22、(1)(2)【解析】(Ⅰ)将数列中的项用和表示,根据等比数列的性质可得到关于的一元二次方程可求得的值,即可得到数列的通项公式;(Ⅱ)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论