版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁沈阳市二十中学高一上数学期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若m,n表示两条不同直线,α表示平面,则下列命题中真命题是()A.若,,则 B.若,,则C.若,,则 D.若,,则2.如图,网格纸的各小格都是正方形(边长为1),粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体的表面积为()A. B.C. D.3.定义在上的奇函数,当时,,则的值域是A. B.C. D.4.容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号12345678频数1013141513129第3组的频数和频率分别是()A.和14 B.14和C.和24 D.24和5.设若,,,则()A. B.C. D.6.已知函数的定义域为,则函数的定义域为()A. B.C. D.7.集合的真子集的个数是()A. B.C. D.8.已知函数的值域为,那么实数的取值范围是()A. B.[-1,2)C.(0,2) D.9.某人用如图所示的纸片,沿折痕折后粘成一个四棱锥形的“走马灯”,正方形做灯底,且有一个三角形面上写上了“年”字,当灯旋转时,正好看到“新年快乐”的字样,则在①、②、③处应依次写上A.快、新、乐 B.乐、新、快C.新、乐、快 D.乐、快、新10.已知函数,则()A.-1 B.2C.1 D.5二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,且,则的最小值为___________.12.已知,则的值为________13.已知集合,,则集合中元素的个数为__________14.若函数在上存在零点,则实数的取值范围是________15.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为__________.16.第24届冬季奥林匹克运动会(TheXXIVOlympicWinterGames),即2022年北京冬季奥运会,计划于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬季奥运会设7个大项,15个分项,109个小项.某大学青年志愿者协会接到组委会志愿者服务邀请,计划从大一至大三青年志愿者中选出24名志愿者,参与北京冬奥会高山滑雪比赛项目的服务工作.已知大一至大三的青年志愿者人数分别为50,40,30,则按分层抽样的方法,在大一青年志愿者中应选派__________人.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,用定义法证明函数在上是减函数;(2)已知二次函数满足,,若不等式恒成立,求的取值范围.18.(1)已知,化简:;(2)已知,证明:19.某种商品在天内每件的销售价格(元)与时间(天)的函数关系为,该商品在天内日销售量(件)与时间(天)之间满足一次函数关系,具体数据如下表:第天(Ⅰ)根据表中提供的数据,求出日销售量关于时间的函数表达式;(Ⅱ)求该商品在这天中的第几天的日销售金额最大,最大值是多少?20.某中学共有3000名学生,其中高一年级有1200名学生,为了解学生的睡眠情况,现用分层抽样的方法,在三个年级中抽取了200名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生的人数及图中a的值;(2)估计样本数据中位数(保留两位小数);(3)估计全校睡眠时间不低于7个小时的学生人数.21.已知函数是定义在R上的奇函数,(1)求实数的值;(2)如果对任意,不等式恒成立,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】对于A,因为垂直于同一平面的两条直线相互平行,故A正确;对于B,如果一条直线平行于一个平面,那么平行于已知直线的直线与该平面的位置关系有平行或在平面内,故B错;对于C,因同平行于一个平面的两条直线异面、相交或平行,故C错;对于D,与一个平面的平行直线垂直的直线与已知平面是平行、相交或在面内,故D错,选A.2、B【解析】根据三视图的法则:长对正,高平齐,宽相等;可得几何体如右图所示,这是一个三棱柱.表面积为:故答案为B.3、B【解析】根据函数为奇函数得到,,再计算时,得到答案.【详解】定义在上的奇函数,则,;当时,,则当时,;故的值域是故选:【点睛】本题考查了函数的值域,根据函数的奇偶性得到时,是解题的关键.4、B【解析】根据样本容量和其它各组的频数,即可求得答案.【详解】由题意可得:第3组频数为,故第3组的频率为,故选:B5、A【解析】将分别与比较大小,即可判断得三者的大小关系.【详解】因为,,,所以可得的大小关系为.故选:A6、B【解析】抽象函数的定义域求解,要注意两点,一是定义域是x的取值范围;二是同一对应法则下,取值范围一致.【详解】的定义域为,,即,,解得:且,的定义域为.故选:.7、B【解析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合的元素个数为,故集合的真子集个数为.故选:B.8、B【解析】先求出函数的值域,而的值域为,进而得,由此可求出的取值范围.【详解】解:因为函数的值域为,而的值域为,所以,解得,故选:B【点睛】此题考查由分段函数的值域求参数的取值范围,分段函数的值域等于各段上的函数的值域的并集是解此题的关键,属于基础题.9、A【解析】根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,即可得出结论【详解】根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,故选A【点睛】本题考查四棱锥的结构特征,考查学生对图形的认识,属于基础题.10、A【解析】求分段函数的函数值,将自变量代入相应的函数解析式可得结果.【详解】∵在这个范围之内,∴故选:A.【点睛】本题考查分段函数求函数值的问题,考查运算求解能力,是简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由已知凑配出积为定值,然后由基本不等式求得最小值【详解】因为,,且,所以,当且仅当,即时等号成立故答案为:12、【解析】利用正弦、余弦、正切之间的商关系,分式的分子、分母同时除以即可求出分式的值.【详解】【点睛】本题考查了同角三角函数的平方和关系和商关系,考查了数学运算能力.13、2【解析】依题意,故,即元素个数为个.14、【解析】分和并结合图象讨论即可【详解】解:令,则有,原命题等价于函数与在上有交点,又因为在上单调递减,且当时,,在上单调递增,当时,作出两函数的图像,则两函数在上必有交点,满足题意;当时,如图所示,只需,解得,即,综上所述实数的取值范围是.故答案为:15、【解析】由题分析若对任意,总存在,使得成立,则的最大值小于等于的最大值,进而求解即可【详解】由题,因为,对于函数,则当时,是单调递增的一次函数,则;当时,在上单调递增,在上单调递减,则,所以的最大值为4;对于函数,,因为,所以,所以;所以,即,故,故答案为:【点睛】本题考查函数恒成立问题,考查分段函数的最值,考查正弦型函数的最值,考查转化思想16、10【解析】根据分层抽样原理求出抽取的人数【详解】解:根据分层抽样原理知,,所以在大一青年志愿者中应选派10人故答案为:10三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)在上为减函数.运用单调性的定义证明,注意取值、作差和变形、定符号、下结论等步骤;(2)设,由题意可得,,的方程,解得,,,可得,由参数分离和二次函数的最值求法,可得所求范围【详解】解:(1)在上为减函数证明:设,,由,可得,,即,即有,所以在上为减函数;(2)设,则,由,可得,则,,解得,,即有,不等式恒成立,即为,即对恒成立,由,当时,取得最小值,可得即的取值范围是18、(1)0;(2)证明见解析.【解析】(1)由给定条件确定出,值的正负及大小,再利用二倍角公式化简计算即得;(2)由给定角求出,利用和角公式变形,再展开所证等式的左边代入计算即得.【详解】(1)因,则,则原式;(2)因,则,即,亦即,则,所以原等式成立.19、(Ⅰ)(,,)(Ⅱ)第天的日销售金额最大,为元【解析】(Ⅰ)设,代入表中数据可求出,得解析式;(Ⅱ)日销售金额为,根据(1)及已知可得其表达式,这是一个分段函数,分段求出最大值后比较即得最大值【详解】(Ⅰ)设日销售量关于时间的函数表达式为,依题意得:,解之得:,所以日销售量关于时间的函数表达式为(,,).(Ⅱ)设商品的日销售金额为(元),依题意:,所以,即:.当,时,,当时,;当,时,,当时,;所以该商品在这天中的第天的日销售金额最大,为元.【点睛】本题考查函数模型应用,由所给函数模型求出解析式是解题关键.本题属于中档题20、(1)人数为,;(2)7.42;(3)约为人.【解析】(1)由分层抽样等比例性质求高一年级学生的人数,根据直方图及频率和为1求参数a.(2)由频率直方图及中位数的性质估计中位数.(3)由直方图计算区间的频率,进而估计全校睡眠时间不低于7个小时的学生人数.【小问1详解】由分层抽样等比例的性质,样本中高一年级学生的人数为.由,可得.【小问2详解】设中位数为x,由、,知:,∴.得,故样本数据的中位数约为7.42.【小问3详解】由图可知,样本数据落在的频率为.故全校睡眠时间不低于7个小时的学生人数约为人.21、(1)1(2)【解析】(1)利用函数为奇函数的定义即可得到m值;(2)先判断出函数f(x)在R上单调递增,利用奇偶性和单调性将不等式转为恒成立,然后变量分离,转为求函数最值问题,最后解不等式即可得a的范围.【详解】解:(1)方法1:因为是定义在R上的奇
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外研版七年级英语下册教案全册
- 吉林省长春市榆树市2024-2025学年九年级上学期11月月考历史试题
- 涉密人员工作培训
- 慢性阑尾炎护理常规
- 《快乐学习半边碗》课件
- 《ktv管理制度》课件
- 用电安全专项教育培训
- 工伤私了协议书1000字
- 药店员工聘用合同范本
- 我能干的事社会活动
- 三阶魔方学习课件
- 三年级语文上册第八单元集体备课+教材解读+解学设计课件
- 部编版二年级语文(上册)课内阅读专项训练题(含答案)
- IEC60335-1-2020中文版-家用和类似用途电器的安全第1部分:通用要求(中文翻译稿)
- 妇幼健康状况分析报告
- 骨科患者的护理评估课件
- 六年级上册数学课件-7.1 百分数的认识 ︳青岛版 (共17张PPT)
- 云教版七年级上册劳技第一章第二节衣服的洗涤与熨烫课件
- 足球竞赛规则裁判法(共56张PPT)
- 监理平行检查记录表格模板
- 水利工程管理单位定岗标准(试点)
评论
0/150
提交评论