




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
炎德英才大联考2025届高一数学第一学期期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列直线中,倾斜角为45°的是()A. B.C. D.2.表示不超过x的最大整数,例如,.若是函数的零点,则()A.1 B.2C.3 D.43.若直线l1:2x+y-1=0与l2:y=kx-1平行,则l1,l2之间的距离等于()A. B.C. D.4.下列函数中,与函数有相同图象的一个是A. B.C. D.5.已知集合,集合,则集合A. B.C. D.6.棱长为1的正方体可以在一个棱长为的正四面体的内部任意地转动,则的最小值为A. B.C. D.7.若直线的倾斜角为,且经过点,则直线的方程是A. B.C. D.8.用二分法求方程的近似解时,可以取的一个区间是()A. B.C. D.9.已知,,则()A. B.C. D.10.若直线平面,直线平面,则直线a与直线b的位置关系为()A.异面 B.相交C.平行 D.平行或异面二、填空题:本大题共6小题,每小题5分,共30分。11.已知则________12.若在幂函数的图象上,则______13.在中,,则等于______14.已知函数,的值域为,则实数的取值范围为__________.15.已知点,,则以线段为直径的圆的标准方程是__________16.设当时,函数取得最大值,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②.(注:利润和投资单位:万元)(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?18.已知是上的奇函数,且(1)求的解析式;(2)判断的单调性,并根据定义证明19.在平面直角坐标系中,已知点,,在圆上(1)求圆的方程;(2)过点的直线交圆于,两点.①若弦长,求直线的方程;②分别过点,作圆的切线,交于点,判断点在何种图形上运动,并说明理由.20.如图,正方体的棱长为,连接,,,,,,得到一个三棱锥.求:(1)三棱锥的表面积;(2)三棱锥的体积21.如图,平行四边形中,,分别是,的中点,为与的交点,若,,试以,为基底表示、、
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线的倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C2、B【解析】利用零点存在定理得到零点所在区间求解.【详解】因为函数在定义域上连续的增函数,且,又∵是函数的零点,∴,所以,故选:B.3、B【解析】根据两直线平行求得k的值,再求两直线之间的距离【详解】直线l2的方程可化为kx-y-1=0,由两直线平行得,k=-2;∴l2的方程为2x+y+1=0,∴l1,l2之间的距离为故选B【点睛】本题考查了直线平行以及平行线之间的距离应用问题,是基础题4、B【解析】逐一考查选项中的函数与所给的函数是否为同一个函数即可确定其图象是否相同.【详解】逐一考查所给的选项:A.,与题中所给函数的解析式不一致,图象不相同;B.,与题中所给函数的解析式和定义域都一致,图象相同;C.的定义域为,与题中所给函数的定义域不一致,图象不相同;D.的定义域为,与题中所给函数的定义域不一致,图象不相同;故选B.【点睛】本题主要考查函数相等的概念,需要同时考查函数的定义域和函数的对应关系,属于中等题.5、C【解析】故选C6、A【解析】由题意可知正方体的外接球为正四面体的内切球时a最小,此时R=,.7、B【解析】直线l的斜率等于tan45°=1,由点斜式求得直线l的方程为y-0=,即故选:B8、B【解析】构造函数并判断其单调性,借助零点存在性定理即可得解.【详解】,令,在上单调递增,并且图象连续,,,在区间内有零点,所以可以取的一个区间是.故选:B9、C【解析】求出集合,,直接进行交集运算即可.【详解】,,故选:C【点睛】本题考查集合的交集运算,指数函数的值域,属于基础题.10、C【解析】利用线面垂直的性质定理进行判断.【详解】由于垂直于同一平面的两直线平行,故当直线平面,直线平面时,直线与直线平行.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分段函数的求值,在不同的区间应使用不同的表达式.【详解】,故答案为:.12、27【解析】由在幂函数的图象上,利用待定系数法求出幂函数的解析式,再计算的值【详解】设幂函数,,因为函数图象过点,则,,幂函数,,故答案为27【点睛】本题主要考查了幂函数的定义与解析式,意在考查对基础知识的掌握情况,是基础题13、【解析】由题;,又,代入得:考点:三角函数的公式变形能力及求值.14、##【解析】由题意,可令,将原函数变为二次函数,通过配方,得到对称轴,再根据函数的定义域和值域确定实数需要满足的关系,列式即可求解.【详解】设,则,∵,∴必须取到,∴,又时,,,∴,∴.故答案为:15、【解析】,,中点坐标为,圆的半径以为直径的圆的标准方程为,故答案为.16、【解析】利用辅助角公式化简函数解析式,再根据最值情况可得解.【详解】由辅助角公式可知,,,,当,时取最大值,即,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.【解析】⑴设出函数解析式,根据图象,即可求得答案;⑵确定总利润函数,换元,利用配方法可求最值;解析:(1)根据题意可设,则f(x)=0.25x(x≥0),g(x)=2(x≥0).(2)设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元则y=(18-x)+2,0≤x≤18令=t,t∈[0,3],则y=(-t2+8t+18)=-(t-4)2+.所以当t=4时,ymax==8.5,此时x=16,18-x=2.所以当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约8.5万元.18、(1)(2)见解析【解析】(1)由可得解;(2)利用单调性的定义证明即可.【小问1详解】已知是上的奇函数,且,所以,解得,所以,小问2详解】根据指数函数的单调性可判断得为增函数.下证明:设是上任意给定的两个实数,且,则,,,,函数在上是单调递增函数19、(1)(2)【解析】(1)设圆的方程为:,将点,,分别代入圆方程列方程组可解得,,,从而可得圆的方程;(2)①由(1)得圆的标准方程为,讨论两种情况,当直线的斜率存在时,设为,则的方程为,由弦长,根据点到直线距离公式列方程求得,从而可得直线的方程;②,利用两圆公共弦方程求出切点弦方程,将代入切点弦方程,即可得结果.试题解析:(1)设圆方程为:,由题意可得解得,,,故圆方程为(2)由(1)得圆的标准方程为①当直线的斜率不存在时,的方程是,符合题意;当直线的斜率存在时,设为,则的方程为,即,由,可得圆心到的距离,故,解得,故的方程是,所以,方程是或②设,则切线长,故以为圆心,为半径的圆的方程为,化简得圆的方程为:,①又因为的方程为,②②①化简得直线的方程为,将代入得:,故点在直线上运动20、(1)(2)【解析】(1)直接按照锥体表面积计算即可;(2)利用正方体体积减去三棱锥,,,的体积即可.【小问1详解】∵是正方体,∴,∴三棱锥的表面积为【小问2详解】三棱锥,,,是完全一样的且正方体的体积为,故21、【解析】分析:直接利用共线向量的性质、向量加法与减法的三角形法则求解即可.详解:由题意,如图,,连接,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国可重复使用防护面罩行业市场全景分析及前景机遇研判报告
- 四川省广安市2025年中考英语真题附答案
- 看谁算得巧(教学设计)-2024-2025学年四年级下册数学沪教版
- 2025年中国可降解PLA吸管行业市场全景分析及前景机遇研判报告
- 中国防护文胸行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 展柜设计培训课件
- 2025年中国钩螺栓行业市场发展前景及发展趋势与投资战略研究报告
- 中国深红硫锑银矿行业调查建议报告
- 2025年 浙江省考行测考试试题附答案
- 中国数模转换器行业市场全景监测及投资前景展望报告
- 七年级数学新北师大版(2024)下册第一章《整式的乘除》单元检测习题(含简单答案)
- 固定动火区管理规定、通知及审批表
- 《课件铁路发展史》课件
- 2025年贵州茅台酒厂集团招聘笔试参考题库含答案解析
- 消渴中医护理查房
- 儿童护照办理委托书
- 《中药调剂技术》课件-中药调剂的概念、起源与发展
- 《数据中心节能方法》课件
- 循环系统疾病智慧树知到答案2024年哈尔滨医科大学附属第一医院
- 2024-2030年中国激光水平仪行业市场发展趋势与前景展望战略分析报告
- 部编本小学语文六年级下册毕业总复习教案
评论
0/150
提交评论