




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省湘潭县一中、双峰一中、邵东一中、永州四中数学高二上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,是椭圆C:的左、右焦点,若椭圆C上存在一点P,使得,则椭圆C的离心率e的取值范围为()A. B.C. D.2.设等差数列的公差为d,且,则()A.12 B.4C.6 D.83.圆心在x轴负半轴上,半径为4,且与直线相切的圆的方程为()A. B.C. D.4.已知数列满足且,则()A.是等差数列 B.是等比数列C.是等比数列 D.是等比数列5.某商场为了解销售活动中某商品销售量与活动时间之间的关系,随机统计了某次销售活动中的商品销售量与活动时间,并制作了下表:活动时间销售量由表中数据可知,销售量与活动时间之间具有线性相关关系,算得线性回归方程为,据此模型预测当时,的值为()A B.C. D.6.已知双曲线的离心率为,则双曲线C的渐近线方程为()A. B.C. D.7.某公司有1000名员工,其中:高层管理人员为50名,属于高收入者;中层管理人员为150名,属于中等收入者;一般员工为800名,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽取100名员工,应当抽取的一般员工人数为()A.100 B.15C.80 D.508.丹麦数学家琴生(Jensen)是世纪对数学分析做出卓越贡献的巨人,特别是在函数的凸凹性与不等式方面留下了很多宝贵的成果.设函数在上的导函数为,在上的导函数为,在上恒成立,则称函数在上为“凹函数”.则下列函数在上是“凹函数”的是()A. B.C. D.9.已知定义在区间上的函数,,若以上两函数的图像有公共点,且在公共点处切线相同,则m的值为()A.2 B.5C.1 D.010.如图,、分别是椭圆的左顶点和上顶点,从椭圆上一点向轴作垂线,垂足为右焦点,且,点到右准线的距离为,则椭圆方程为()A. B.C. D.11.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.12.抛掷两枚硬币,若记出现“两个正面”“两个反面”“一正一反”的概率分别为,,,则下列判断中错误的是().A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.等比数列的前n项和,则的通项公式为___________.14.已知点P是抛物线y2=2x上的动点,点P在y轴上的射影是M,点,则|的最小值是_________15.过点作圆的两条切线,切点为A,B,则直线的一般式方程为___________.16.已知数列中,,,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆与直线(1)若,直线与圆相交与,求弦长(2)若直线与圆无公共点求的取值范围18.(12分)已知数列是等差数列,且,.(1)若数列中依次取出第2项,第4项,第6项,…,第项,按原来顺序组成一个新数列,试求出数列的通项公式;(2)令,求数列的前项和.19.(12分)已知数列的前项和满足,数列满足(1)求,的通项公式;(2)若数列满足,求的前项和20.(12分)已知为等差数列,前n项和为,数列是首项为1的等比数列,,,.(1)求和的通项公式;(2)求数列的前n项和.21.(12分)求满足下列条件的圆锥曲线方程的标准方程.(1)经过点,两点的椭圆;(2)与双曲线-=1有相同的渐近线且经过点的双曲线.22.(10分)已知数列是公比为正数的等比数列,且,.(1)求数列的通项公式;(2)若,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先设,根据P在椭圆上得到,由,得到的范围,即为离心率的范围.【详解】由椭圆的方程可得,,设,由,则,即,由P在椭圆上可得,所以,代入可得所以,因为,所以整理可得:,消去得:所以,即所以.故选:B2、B【解析】利用等差数列的通项公式的基本量计算求出公差.【详解】,所以.故选:B3、A【解析】根据题意,设圆心为坐标为,,由直线与圆相切的判断方法可得圆心到直线的距离,解得的值,即可得答案【详解】根据题意,设圆心为坐标为,,圆的半径为4,且与直线相切,则圆心到直线的距离,解得:或13(舍,则圆的坐标为,故所求圆的方程为,故选:A4、D【解析】由,化简得,结合等比数列、等差数列的定义可求解.【详解】由,可得,所以,又由,,所以是首项为,公比为2的等比数列,所以,,,,所以不是等差数列;不等于常数,所以不是等比数列.故选:D.5、C【解析】求出样本中心点的坐标,代入回归直线方程,求出的值,再将代入回归方程即可得解.【详解】由表格中的数据可得,,将样本中心点的坐标代入回归直线方程可得,解得,所以,回归直线方程为,故当时,.故选:C.6、B【解析】根据a的值和离心率可求得b,从而求得渐近线方程.【详解】由双曲线的离心率为,知,则,即有,故,所以双曲线C的渐近线方程为,即,故选:B.7、C【解析】按照比例关系,分层抽取.【详解】由题意可知,所以应当抽取的一般员工人数为.故选:C8、B【解析】根据“凹函数”的定义逐项验证即可解出【详解】对A,,当时,,所以A错误;对B,,在上恒成立,所以B正确;对C,,,所以C错误;对D,,,因为,所以D错误故选:B9、C【解析】设两曲线与公共点为,分别求得函数的导数,根据两函数的图像有公共点,且在公共点处切线相同,列出等式,求得公共点的坐标,代入函数,即可求解.【详解】根据题意,设两曲线与公共点为,其中,由,可得,则切线的斜率为,由,可得,则切线斜率为,因为两函数的图像有公共点,且在公共点处切线相同,所以,解得或(舍去),又由,即公共点的坐标为,将点代入,可得.故选:C.10、A【解析】设椭圆方程为,设该椭圆的焦距为,则,求出点的坐标,根据可得出,可得出,,结合已知条件求得的值,可得出、的值,即可得出椭圆的方程.【详解】设椭圆方程为,设该椭圆的焦距为,则,由图可知,点第一象限,将代入椭圆方程得,得,所以,点,易知点、,,,因为,则,得,可得,则,点到右准线的距离为为,则,,因此,椭圆的方程为.故选:A.11、C【解析】点在平面内的射影是坐标不变,坐标为0的点.【详解】点在坐标平面内的射影为,故点M的坐标是故选:C12、A【解析】把抛掷两枚硬币的情况均列举出来,利用古典概型的计算公式,把,,算出来,判断四个选项的正误.【详解】两枚硬币,记为与,则抛掷两枚硬币,一共会出现的情况有四种,A正B正,A正B反,A反B正,A反B反,则,,,所以A错误,BCD正确故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用的关系,结合是等比数列,即可求得结果.【详解】因为,故当时,,则,又当时,,因为是等比数列,故也满足,即,故,此时满足,则.故答案为:.14、##【解析】由抛物线的定义可得,所以的最小值转化为求的最小值,由图可知的最小值为,从而可求得答案【详解】抛物线y2=2x焦点,准线为,由抛物线的定义可得,所以,因为,,所以,所以,当且仅当三点共线且在线段上时,取得最小值,所以的最小值为,故答案为:15、【解析】已知圆的圆心,点在以为直径的圆上,两圆相减就是直线的方程.【详解】,圆心,点在以为直径的圆上,,所以圆心是,以为直径的圆的圆的方程是,直线是两圆相交的公共弦所在直线,所以两圆相减就是直线的方程,,所以直线的一般式方程为.故答案为:【点睛】结论点睛:过圆外一点引圆的切线,那么以圆心和圆外一点连线段为直径的圆与已知圆相减,就是切点所在直线方程,或是两圆相交,两圆相减,就是公共弦所在直线方程.16、【解析】根据递推公式一一计算即可;【详解】解:因为,所以,,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)求出圆心到直线的距离,再由垂径定理求弦长;(2)由圆心到直线的距离大于半径列式求解的范围【详解】解:(1)圆,圆心为,半径,圆心到直线的距离为,弦长(2)若直线与圆无公共点,则圆心到直线的距离大于半径解得或18、(1),;(2).【解析】(1)利用等差数列性质求出数列公差及通项公式,由求解作答.(2)由(1)的结论求出,再用错位相减法计算作答.【小问1详解】等差数列中,,解得,公差,则,因此,,依题意,,所以数列的通项公式,.【小问2详解】由(1)知,,则,因此,,,所以.19、(1),;(2).【解析】(1)由求得的递推关系,结合可得其为等比数列,从而得通项公式,代入计算得;(2)求出,由错位相减法求和【详解】(1)由可得,,即,易知,故..(2)由(1)可知,①,②,①-②得,.【点睛】方法点睛:本题主要考查等比数列的通项公式及错位相减法求和.数列求和的常用方法:公式法、错位相减法、裂项相消法、分组(并项)求和法,倒序相加法20、(1)的通项公式为,的通项公式为;(2).【解析】(1)用基本量表示题干中的量,联立求解即可;(2)由,,用乘公比错位相减法求和即可.【详解】(1)设等差数列的公差为d,等比数列的公比为q.由已知,得,而,所以,解得,所以.由得.①,由得.②,联立①②解得,所以.故的通项公式为,的通项公式为.(2)设数列的前n项和为,由,得.,,上述两式相减,得,所以,即.21、(1);(2)【解析】(1)由题意可得,,从而可求出椭圆的标准方程,(2)由题意设双曲线的共渐近线方程为,再将的坐标代入方程可求出的值,从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品研究中的统计分析试题及答案
- 监理员面试试题及答案
- 网络规划设计师考试市场需求趋势试题及答案
- 药剂职业发展的新机遇试题及答案
- 文化产业管理政策法规试题及答案
- 文化产业管理考试的全球视野与比较试题及答案
- 营养干预计划的制定与2025年考试客观题试题及答案
- 药剂学道德与法律问题试题及答案
- 西医临床考前自我评估与反思方法试题及答案
- 药物配伍常识2024年初级药师考试试题及答案
- 美术四年级国测模拟题(满分50分)附有答案
- 《事故汽车常用零部件修复与更换判别规范》
- 国家粮食和物资储备局湖北局三三八处招聘笔试参考题库含答案解析2024
- 家族办公室公司章程
- 2024年度保密教育线上培训考试题库新版
- 【9道三模】2024年安徽省合肥市蜀山区中考三模道德与法治试题(含解析)
- 敲墙搬运合同范本
- (高清版)JTGT 5190-2019 农村公路养护技术规范
- 小学生必背古诗“飞花令”200句
- 2024年3月青少年软件编程Scratch图形化等级考试试卷一级真题(含答案)
- 浙江省强基联盟联考2023-2024学年高一下学期5月联考语文试题(含答案)
评论
0/150
提交评论