专题03勾股定理重难点题型分类(原卷版)2022-2023学年八年级数学下册重难点题型分类高分必刷题(人教版)_第1页
专题03勾股定理重难点题型分类(原卷版)2022-2023学年八年级数学下册重难点题型分类高分必刷题(人教版)_第2页
专题03勾股定理重难点题型分类(原卷版)2022-2023学年八年级数学下册重难点题型分类高分必刷题(人教版)_第3页
专题03勾股定理重难点题型分类(原卷版)2022-2023学年八年级数学下册重难点题型分类高分必刷题(人教版)_第4页
专题03勾股定理重难点题型分类(原卷版)2022-2023学年八年级数学下册重难点题型分类高分必刷题(人教版)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题03勾股定理重难点题型分类高分必刷题(原卷版)专题简介:本份资料包含《勾股定理》这一章的全部重要题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含八类题型:已知两边求第三边、已知一边和一特殊角求其它边长、折叠模型、最短爬行路径问题、勾股定理与图形面积关系、勾股定理的逆定理、勾股定理的应用题、勾股定理与其它章节的综合题。适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。题型一已知两边,求第三边1.(安徽安庆)在中,若两直角边,满足,则斜边的长度是______.2.(四川凉山)已知直角三角形的两边长分别为3、4.则第三边长为________.3.如图,x轴、y轴上分别有两点A(3,0)、B(0,2),以点A为圆心,AB为半径的弧交x轴负半轴于点C,则点C的坐标为(

)A.(﹣1,0) B.(2,0) C.(3,0) D.(3,0)4.(周南)一架方梯长25m,如图,斜靠在一面墙上,梯子底端离墙7m,求:(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4m,那么梯子的底端在水平方向滑动了几米?

题型二已知一边和一特殊角求其它边长5.(长郡)如图,,平分,交于,交于,若,则等于(

)A.5 B.4 C.3 D.26.如图,在平面直角坐标系中,,两点的坐标分别为和,为等边三角形,则点的坐标为______.7.(山东东营)如图,在中,,,,则的长度为(

)A. B.2 C. D.38.(师大)小明将一幅三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其它各边的长,若已知,求的长。 9.(四川内江)已知,在中,,,,则的面积为__.

题型三:折叠模型:已知一边,设第二边为x,第三边为“几x”,再列方程.10.(四川达州)如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则△ABE的面积为(

)A.6cm2 B.8cm2 C.10cm2 D.12cm211.(四川凉山)如图,中,,将沿DE翻折,使点A与点B重合,则CE的长为(

)A. B.2 C. D.12.(2023春·八年级课时练习)如图,在矩形中,,,将矩形沿折叠,点落在点处,则重叠部分的面积为(

)A. B. C. D.13.(山东菏泽)如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.

14.(长郡)如图,在中,,,,是的垂直平分线,交于点,交于点,求的长.

题型四最短爬行路径问题:先展开,再连起点与终点15.(吉林长春)如图,圆柱的底面周长是24,高是5,一只在A点的蚂蚁想吃到B点的食物,沿着侧面需要爬行的最短路径是()A.9 B.13 C.14 D.2516.(山东枣庄)如图,圆柱体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图所示,则最短路程为_____.17.(辽宁辽阳)如图,一只蚂蚁从实心长方体的顶点出发,沿长方体的表面爬到对角顶点处(三条棱长如图所示),问最短路线长为_________.题型五勾股定理与图形面积关系18.(广西玉林)如图,以Rt△ABC的两直角边为边向外作正方形,其面积分别为S1,S2,若S1=8cm2,S2=17cm2,则斜边AB的长是(

)A.3cm B.6cm C.4cm D.5cm19.(湖南邵阳)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3,则最大正方形E的面积是()A.13 B.26 C.34 D.4720.如图,在中,以AC为直角边向外作,分别以AB,BC,CD,DA为直径向外作半圆,面积分别记为S1,S2,S3,S4,已知,,,则S4为(

)A.2 B.3 C. D.题型六勾股定理的逆定理21.(广东湛江)下列各组数中,不能作为直角三角形的三边长的是()A.1,2, B.5,4,3 C.17,8,15 D.2,3,422.(陕西宝鸡)ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定ABC为直角三角形的是(

)A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2 D.a:b:c=3:4:623.(四川雅安)如图,是一块草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块草坪的面积.24.(山东青岛)我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?25.(广东深圳)在一条东西走向的河的一侧有一村庄C,河边原有两个取水点A,B,其中,由于某种原由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得千米,千米,千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明.(2)求原来的路线AC的长.

题型七勾股定理的应用题26.(广东河源)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m27.(山东青岛)如图,有一架秋千,当它静止时,踏板离地0.5米,将它往前推3米时,踏板离地1.5米,此时秋千的绳索是拉直的,则秋千的长度是(

)A.3米 B.4米 C.5米 D.6米28.(江西抚州)长清的园博园广场视野开阔,阻挡物少,成为不少市民放风筝的最佳场所,某校七年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD的长为15米;②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE;(2)如果小明想风筝沿CD方向下降12米,则他应该往回收线多少米?29.(2022秋·江苏·八年级专题练习)若图是一个高为3米,长为5米的楼梯表面铺地毯.(1)求地毯的长是多少米?(2)如果地毯的宽是2米,地毯每平方售价是10元,铺这个楼梯一共需要多少元?30.(河南驻马店)沙尘暴是指强风将地面尘沙吹起使空气很混浊,水平能见度很低的一种天气现象.人类在发展经济过程中大肆破坏植被,导致沙尘暴爆发频数增加.如图,某气象局监测到一个沙尘暴中心沿东西方向AB由A向B移动,已知点C为一城镇,且点C与直线AB上的两点A,B的距离分别为:,,,以沙尘暴中心为圆心周围25km以内为受影响区域.(1)请通过计算说明城镇C会受到沙尘暴影响的原因;(2)若沙尘暴中心的移动速度为20km/h,则沙尘暴影响该城镇持续的时间有多长?31.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A、B的距离分别为300km和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C会受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?32.(2021·广西柳州)在一次海上救援中,两艘专业救助船同时收到某事故渔船的求救讯息,已知此时救助船在的正北方向,事故渔船在救助船的北偏西30°方向上,在救助船的西南方向上,且事故渔船与救助船相距120海里.(1)求收到求救讯息时事故渔船与救助船之间的距离;(2)若救助船A,分别以40海里/小时、30海里/小时的速度同时出发,匀速直线前往事故渔船处搜救,试通过计算判断哪艘船先到达.33.(内蒙古)超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?

34.(河南新乡)拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?35.(广东茂名)新冠疫情期间,为了提高人民群众防疫意识,很多地方的宣讲车开起来了,大喇叭响起来了,宣传横幅挂起来了,电子屏亮起来了,电视、广播、微信、短信齐上阵,防疫标语、宣传金句频出,这传递着打赢疫情防控阻击战的坚定决心.如图,在一条笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离AB为800米,若宣讲车周围1000米以内能听到广播宣传,宣讲车在公路MN上沿MN方向行驶.(1)请问村庄A能否听到宣传?请说明理由;(2)如果能听到,已知宣讲车的速度是300米/分钟,那么村庄A总共能听到多长时间的宣传?题型八勾股定理与其它章节的综合题36.(青竹湖)利用所学的知识计算:(1)已知,且,,求的值;(2)已知、、为的三边长,若,求的周长.37.(广益)△,△是等腰直角三角形,点在上.(1)求证:△≌△(2)若,,求.38.(雅境)在中,平分交于点,在上取一点,使得.(1)求证:;(2)若,,,求的长.39.(师大)如图,在中,=,,点是上一动点,连接,过点作,并且始终保持,连接.(1)求证:(2)若平分交于,求证:(3)在(2)的条件下,若,,求的长,

40.(青竹湖)定义:对于平面直角坐标系中的任意两点和,我们把它们的横、纵坐标的差的平方和的算术平方根称作这两点的“湘一根”,记作,即.(1)若和,则=______;(2)若点,,其中为任意实数,求的最小值(3)若为常数,且,点的坐标为,点的坐标为,点的坐标为,求的最小值以及的最大值(用含的代数式表示)41.(青竹湖)材料一:在直角三角形中,两个直角边的平方和等于斜边的平方,这个定理称为为“勾股定理”。如:Rt△中,两条直角边分别为、,斜边为,则有成立;材料二:平方差公式:,存在

一个特殊的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论